Skip to main content

Advertisement

Log in

In silico cytotoxicity estimation of ionic liquids based on their two- and three-dimensional structural descriptors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The cytotoxicity of a series of ionic liquids containing ammonium, pyrrolidinium, imidazolium, pyridinium, and piperidinium cations against leukemia rat cell line IPC-81 was estimated from their structural parameters using quantitative structure–activity relationship methodology. Linear and nonlinear models were developed using genetic algorithm multiple linear regression and multilayer perceptron neural network approaches. Robustness and reliability of the constructed models were evaluated by internal, external, and Y-randomization procedures. Furthermore, the chemical applicability domain was determined via a leverage approach for each model. The results of this study revealed that the contribution of structural characteristics of the anionic parts of the studied ILs were fewer than of the cationic parts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dommert F, Schmidt J, Krekeler C, Zhao YY, Berger R, Delle Site L, Holm C (2010) J Mol Liq 152:2

    Article  CAS  Google Scholar 

  2. Bourbigou HO, Magna L, Morvan D (2010) Appl Catal A 373:1

    Article  Google Scholar 

  3. Lukasik RB (2007) Monatsh Chem 138:1137

    Article  Google Scholar 

  4. Earle MJ, Seddon KR (2000) Pure Appl Chem 72:1391

    Article  CAS  Google Scholar 

  5. Thuy Pham TP, Cho CW, Yun YS (2010) Water Res 44:352

    Article  Google Scholar 

  6. Romero A, Santos A, Tojo J, Rodriguez A (2008) J Hazard Mater 151:268

    Article  CAS  Google Scholar 

  7. Rankea J, Muller A, Weber UB, Stock F, Stolte S, Arning J, Stormann R, Jastorff B (2007) Ecotoxicol Environ Saf 67:430

    Article  Google Scholar 

  8. Kumar RA, Papaïconomou N, Lee JM, Salminen J, Clark DS, Prausnitz JM (2009) Environ Toxicol 24:388

    Article  CAS  Google Scholar 

  9. Schultz TW, Cronin MTD, Netzev TI (2003) J Mol Struct (THEOCHEM) 622:23

    Google Scholar 

  10. Nowaczyk A, Banachiewicz BM (2010) Cent Eur J Chem 8:440

    Article  CAS  Google Scholar 

  11. Gosav S, Praisler M, Dorohoi DO (2007) J Mol Struct 834–836:188

    Article  Google Scholar 

  12. Yan C, Han M, Wan H, Guan G (2010) Fluid Phase Equilib 292:104

    Article  CAS  Google Scholar 

  13. Tochigi K, Yamamoto H (2007) J Phys Chem C 111:15989

    Article  CAS  Google Scholar 

  14. Jacquemin J, Ge R, Nancarrow P, Rooney DW, Gomes MFC, Pádua AAH, Hardacre C (2008) J Chem Eng Data 53:716

    Article  CAS  Google Scholar 

  15. Lazzus JA (2009) J Taiwan Inst Chem Eng 40:213

    Article  CAS  Google Scholar 

  16. Torrecilla JS, Garcia J, Rojo E, Rodriguez F (2009) J Hazard Mater 164:182

    Article  CAS  Google Scholar 

  17. OECD principles for the Validation, for Regulatory Purpose, of (Q)SAR Models, http://www.oecd.org/document/4/0,3343,en_2649_34379_42926724_1_1_1_1,00.html

  18. Moreau G, Broto P (1980) Nouv J Chim 4:359

    CAS  Google Scholar 

  19. Consonni V, Todeschini R, Pavan M (2002) J Chem Inf Comput Sci 42:682

    CAS  Google Scholar 

  20. Kušic H, Rasulev B, Leszczynsk D, Leszczynski J, Koprivana N (2009) Chemosphere 75:1128

    Article  Google Scholar 

  21. Osmialowski K, Halkiewicz J, Kaliszan R (1986) J Chromatogr 361:63

    Article  CAS  Google Scholar 

  22. Urra LS, Gonzalez MP, Teijeira M (2006) Bioorg Med Chem 14:7347

    Article  Google Scholar 

  23. Docherty KM, Kulpa CF (2005) Green Chem 7:185

    Article  CAS  Google Scholar 

  24. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  25. UFT Merck Ionic Liquids Biological Effects Database, http://www.il-eco.uft.unibremen.de/

  26. ChemSketch ver. 12, Advanced Chemistry Development, http://www.acdlabs.com/resources/freeware/chemsketch/

  27. HyperChem ver. 7, Hypercube Inc, http://www.hyper.com/

  28. MOPAC 6.0, http://www.ccl.net/cca/software/MS-WIN95-NT/mopac6/index.shtml

  29. Dragon, Talete s.r.l., http://www.talete.mi.it/index.htm

  30. CODESSA, Semichem Inc, http://www.semichem.com/

  31. Yasri A, Hartsough D (2001) J Chem Inf Comput Sci 41:1218

    CAS  Google Scholar 

  32. Hasegawa KJ (1999) Chem Inf Comput Sci 39:112

    CAS  Google Scholar 

  33. Leardi RJ (2007) J Chromatogr A 1158:226

    Article  CAS  Google Scholar 

  34. STATISTICA rel. 7, Statsoft Inc, http://www.statsoft.com/

  35. Kustrin SA, Beresford R (2000) J Pharm Biomed Anal 22:717

    Article  Google Scholar 

  36. Daqi G, Yan J (2005) Pattern Recognit 38:1469

    Article  Google Scholar 

  37. Kanzow C, Yamashita N, Fukushima M (2004) J Comput Appl Math 172:375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Fatemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatemi, M.H., Izadiyan, P. In silico cytotoxicity estimation of ionic liquids based on their two- and three-dimensional structural descriptors. Monatsh Chem 142, 1111–1119 (2011). https://doi.org/10.1007/s00706-011-0528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0528-0

Keywords

Navigation