Skip to main content

Advertisement

Log in

Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue virus (DENV) is the causative agent of the most important mosquito-borne viral disease, which is endemic to over 100 countries in tropical and subtropical areas of the world. It is transmitted to humans by Aedes mosquitoes. The first step in the viral infection of host cells is virion attachment to the plasma membrane, which is mediated by specific surface molecules. There are several molecules that participate in DENV infection of mosquitoes, but only a few have been identified. In this work, we co-purified 4 proteins from C6/36 cells using a recombinant DENV 4 E protein and identified them as 70 kDa Heat Shock and 70 kDa Heat Shock cognate proteins (HSP70/HSc70), Binding immunoglobulin protein (BiP), Thioredoxin/protein disulphide isomerase (PDI), and 44 kDa Endoplasmic reticulum resident protein (ERp44) via matrix-assisted laser desorption/ionisation time of flight (Maldi-ToF) analysis. Using immunofluorescence and flow cytometry assays, we observed re-localisation of HSP70/HSc70 and, to a lesser extent, BiP to the plasma membrane under stress conditions, such as during DENV infection. By performing binding and infection assays independently, we found that all 4 proteins participate in both processes, but to differing extents: HSP70/HSc70 is the most critical component, while ERp44 is less important. Viral infection was not inhibited when the cells were incubated with antibodies against all of the surface proteins after virus binding, which suggests that DENV entry to C6/36 cells is mediated by these proteins at the same step and not sequentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Machado CM, Martins TC, Colturato I, Leite MS, Simione AJ, Souza MP, Mauad MA, Colturato VR (2009) Epidemiology of neglected tropical diseases in transplant recipients. Review of the literature and experience of a Brazilian HSCT center. Rev Inst Med Trop S Paulo 51:309–324

    PubMed  Google Scholar 

  2. Esler D (2009) Dengue-clinical and public health ramifications. Aust Fam Physician 38:876–879

    PubMed  Google Scholar 

  3. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  PubMed  CAS  Google Scholar 

  4. Ren J, Ding T, Zhang W, Song J, Ma W (2007) Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells? Virology J. doi:10.1186/1743-422X-4-83

    Google Scholar 

  5. Paingankar MS, Gokhale MD, Deobagkar DN (2010) Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 155:1453–1461

    Article  PubMed  CAS  Google Scholar 

  6. Halstead SB, O’Rourke EJ (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217

    Article  PubMed  CAS  Google Scholar 

  7. Halstead SB, O’Rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–741

    Article  PubMed  CAS  Google Scholar 

  8. Morens DM, Halstead SB (1990) Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J Gen Virol 71:2909–2914

    Article  PubMed  Google Scholar 

  9. Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P, Porter K, Rudiman IF, Yuwono D, Puthavathana P, Marivich MA (2008) Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 882:3939–3951

    Article  Google Scholar 

  10. Wang SW, He R, Patarapotikul J, Innis BL, Anderson R (1995) Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 50:254–257

    Article  Google Scholar 

  11. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871

    Article  PubMed  CAS  Google Scholar 

  12. Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85:9478–9485

    Article  PubMed  CAS  Google Scholar 

  13. Martínez-Barragán JJ, del Angel RM (2001) Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75:7818–7827

    Article  PubMed  Google Scholar 

  14. Ramos-Castañeda J, Imbert JL, Barron BL, Ramos C (1997) A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J Neurovirol 3:435–440

    Article  PubMed  Google Scholar 

  15. Navarro-Sánchez E, Almeyer R, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Desprès P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. Embo Rep 4:723–728

    Article  PubMed  Google Scholar 

  16. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SING (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    Article  PubMed  CAS  Google Scholar 

  17. Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: Identification of the 37-Kilodalton/67-Kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656

    Article  PubMed  CAS  Google Scholar 

  18. Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMRI) interaction with dengue virus serotypes 1, 2 and 3. Virology J. doi:10.1186/1743-422X-2-25

    Google Scholar 

  19. Miller JL, de Wet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. doi:10.1371/journal.ppat.0040017

    Google Scholar 

  20. Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927

    Article  PubMed  CAS  Google Scholar 

  21. Upanan S, Kuadkikan A, Smith DR (2008) Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 151:325–328

    Article  PubMed  CAS  Google Scholar 

  22. Reyes-Del Valle J, Chávez-Salinas S, Medina F, del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  PubMed  CAS  Google Scholar 

  23. Chavez-Salinas S, Ceballos-Olvera I, Reyes-del Valle J, Medina F, del Angel RM (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus Res 138:111–118

    Article  PubMed  CAS  Google Scholar 

  24. Zhang JL, Wang JL, Gao N, Chen ZT, Tian YP, An J (2007) Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun 356:763–768

    Article  PubMed  CAS  Google Scholar 

  25. Sriurairatna S, Bhamarapravati N (1977) Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg 26:1199–1205

    PubMed  CAS  Google Scholar 

  26. Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. doi:10.1186/1471-2180-7-9

    PubMed  Google Scholar 

  27. Salas-Benito JS, del Angel RM (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 10:7246–7252

    Google Scholar 

  28. Mendoza MY, Salas-Benito JS, Lanz-Mendoza H, Hernández-Martínez S, del Angel RM (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67:76–84

    CAS  Google Scholar 

  29. Salas-Benito JS, Reyes-Del Valle J, Salas-Benito M, Ceballos-Olvera I, Mosso C, del Angel RM (2007) Evidence that the 45-kDa glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock–related protein. Am J Trop Med Hyg 77:283–290

    PubMed  CAS  Google Scholar 

  30. Muñoz ML, Cisneros A, Cruz J, Das P, Tovar R, Ortega A (1998) Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett 168:251–258

    Article  PubMed  Google Scholar 

  31. Mercado-Curiel RF, Esquinca-Aviles HA, Tovar R, Diaz-Badillo A, Camacho-Nuez M, Muñoz ML (2006) The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol. doi:10.1186/1471-2180-6-85

    PubMed  Google Scholar 

  32. Mercado-Curiel RF, Black WC IV, Muñoz ML (2008) A dengue receptor as possible genetic marker of vector competente in Aedes aegypti. BMC Microbiol. doi:10.1186/1471-2180-8-118

    PubMed  Google Scholar 

  33. Cao-Lormeau VM (2009) Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands. Virology J. doi:10.1186/1743-422X-6-35

    Google Scholar 

  34. Sakoonwatanyoo P, Boonsanay V, Smith DR (2006) Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 49:161–172

    Article  PubMed  CAS  Google Scholar 

  35. Kuadkitkan A, Wikan N, Fongsaran C, Duncan RS (2010) Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 406:149–161

    Article  PubMed  CAS  Google Scholar 

  36. Igarashi A (1978) Isolation of a Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol 40:531–544

    Article  PubMed  CAS  Google Scholar 

  37. Kuno G, Oliver A (1989) Maintaining mosquito cell lines at high temperatures: effects on the replication of flaviviruses. In Vitro Cell Dev Biol 25:193–196

    Article  PubMed  CAS  Google Scholar 

  38. Gould EA, Clegg JCS (1991) Growth, titration and purification of alphaviruses and flaviviruses. A practical approach in virology. IRL Press, Oxford, pp 43–78

    Google Scholar 

  39. Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643

    Article  PubMed  CAS  Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  41. Reyes-del Valle J, del Angel RM (2004) Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116:92–102

    Article  Google Scholar 

  42. Triantafilou K, Triantafilou M (2004) Coxsackievirus B4-induced cytokine production in pancreatic cell is mediated through toll-like receptor 4. J Virol 78:11313–11320

    Article  PubMed  CAS  Google Scholar 

  43. Ludert JE, Mosso C, Ceballos-Olvera I, del Angel RM (2008) Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells. Virology J. doi:10.1186/1743-422X-5-51

    Google Scholar 

  44. Sigma Plot Statistics. SigmaPlot Statistics User Guide. pp 163-164. http://alfabib.com/filer/SigmaPlot11StatisticsUserGuide.pdf

  45. Colpitts TM, Cox J, Nguyen A, Feitosa F, Krishnan MN, Fikrig E (2011) Use a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virology 417:179–187

    Article  PubMed  CAS  Google Scholar 

  46. Mosso C, Galván-Mendoza IJ, Ludert JE, del Angel RM (2008) Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193–199

    Article  PubMed  CAS  Google Scholar 

  47. Mayer MP (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153:1–46

    Article  PubMed  CAS  Google Scholar 

  48. Zhu YZ, Cao MM, Wang WB, Wang W, Ren H, Zhao P, Qi ZT (2012) Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J Gen Virol 93:61–71

    Article  PubMed  CAS  Google Scholar 

  49. Guerrero CA, Bouyssounade D, Zárate S, Pavel I, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  PubMed  CAS  Google Scholar 

  50. Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565

    Article  PubMed  CAS  Google Scholar 

  51. Benoit JB, Lopez-Martínez G, Patrick KR, Phillips ZP, Krause TB, Denlinger DL (2011) Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci USA 108:8026–8029

    Article  PubMed  CAS  Google Scholar 

  52. Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PIK3-dependent NF-kappaB activation. Microbes Infect 8:157–171

    Article  PubMed  CAS  Google Scholar 

  53. Lee CJ, Liao CL, Lin YL (2005) Flavivirus activates prosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79:8388–8399

    Article  PubMed  CAS  Google Scholar 

  54. Das S, Chakraborty S, Basu A (2010) Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. J Neurochem 115:537–549

    Article  PubMed  CAS  Google Scholar 

  55. Yang CM, Lin CC, Lee IT, Lin YH, Yang CM, Chen WJ, Jou MJ, Hsiao LD (2012) Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3 K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflamm 9:12. http://www.jneuroinflammation.com/content/9/1/12

  56. Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, Mori A, Romero-Severson J, Severson DW (2011) Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 5:e1385. doi:10.1371/journal.pntd.0001385

    Article  PubMed  CAS  Google Scholar 

  57. Modis Y, Ogata S, Clements D, Harrison SC (2003) A lingand-binding pocket in the dengue virus envelope protein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  58. Schwarze S, Rangnekar VM (2010) Targeting plasma membrane GRP78 for cancer growth inhibition. Cancer Biol Ther 9:153–155

    Article  PubMed  CAS  Google Scholar 

  59. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Y, Liu R, Ni M, Gill P, Lee AS (2010) Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem 285:15065–15075

    Article  PubMed  CAS  Google Scholar 

  61. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  PubMed  CAS  Google Scholar 

  62. Honda T, Horie M, Daito T, Ikuta K, Tomonaga K (2009) Molecular chaperone BiP interacts with borna disease virus glycoprotein at the cell surface. J Virol 83:12622–12625

    Article  PubMed  CAS  Google Scholar 

  63. Limjindaporn T, Wongwiwat W, Noisakran S, Srisawat C, Netsawang J, Puttikhunt C, Kasinrerk W, Avirutnan P, Thiemmeca S, Sriburi R, Sittisombut N, Malasit P, Yenchitsomanus PT (2009) Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem Biophys Res Commun 6:196–200

    Article  Google Scholar 

  64. Wu YP, Chang CM, Hung CY, Tsai MC, Schuyler SC, Wang RYL (2011) Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virology J. doi:10.1186/1743-422X-8-128

    Google Scholar 

  65. Ni M, Zhang Y, Lee AS (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434:181–188

    Article  PubMed  CAS  Google Scholar 

  66. Delpino A, Piselli P, Vismara D, Vendetti S, Colizzi V (1998) Cell surface localization of the 78 kDa glucose regulated protein (GRP 78) induced by thapsigargin. Mol Membr Biol 15:21–26

    Article  PubMed  CAS  Google Scholar 

  67. Delpino A, Castelli M (2002) The 78 kDa glucose-regulated protein (GRP78/BiP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci Rep 22:407–420

    Article  PubMed  CAS  Google Scholar 

  68. Jakobsen CG, Rasmussen N, Laenkholm AV, Ditzel HJ (2007) Phage display-derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Carner Res 67:9507–9517

    CAS  Google Scholar 

  69. Kerber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, Gray PC (2009) Blockade of cripto binding to cell surface GRP78 inhibits oncogenic cripto signaling via MAPK/PI3 K and Smad2/3 pathways. Oncogene 28:2324–2336

    Article  Google Scholar 

  70. Huergo-Zapico L, Gonzalez-Rodriguez AP, Contesti J, Gonzalez E, Lopez-Soto A, Fernandez-Guiza A, Acebes-Huesta A, de Los Toyos JR, Lopez-Larrea C, Groh V, Spies T, Gonzalez S (2012) Expresión of ERp5 and GRP78 on the membrana of chronic lymphocytic leucemia cells: association with soluble MICA shedding. Cancer Immunol Immunother 61:1201–1210

    Article  PubMed  CAS  Google Scholar 

  71. Bhattacharjee G, Ahamed J, Pedersen B, El-Sheikh A, Mackman N, Ruf W, Liu C, Edgington TS (2005) Regulation of tissue factor-mediated initiation of the coagulation cascade by cell surface Grp78. Arterioscler Thromb Vasc Biol 25:1737–1743

    Article  PubMed  CAS  Google Scholar 

  72. Huo R, Zhu YF, Ma X, Lin M, Zhou ZM, Sha JH (2004) Differential expression of glucose-regulated protein 78 during spermatogenesis. Cell Tissue Res 316:359–367

    Article  PubMed  CAS  Google Scholar 

  73. Guerrero CA, Calderón MN, Acosta O, Guzmán F (2008) Interferencia de la infección por rotavirus mediante la inhibición de la actividad de la proteína disulfuro isomerasa (DPI) de la membrana celular de las líneas MA104 y Caco-2. Revista de Medicina. 30:229–258

    Google Scholar 

  74. Barbouche R, Lortat-Jacob H, Jones IM, Fenouillet E (2005) Glycosaminoglycans and protein disulfide isomerase-mediated reduction of HIV. Env Mol Pharmacol 67:1111–1118

    Article  CAS  Google Scholar 

  75. Rainey-Barger EK, Mkrtchian S, Tsai B (2007) Dimerization of ERp29, and PDI-like protein, is essential for its diverse functions. Mol Biol Cell 18:1253–1260

    Article  PubMed  CAS  Google Scholar 

  76. Cheng HJ, Lei HY, Lin CF, Luo YH, Wan SW, Liu HS, Yeh TM, Lin YS (2009) Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol Immunol 47:398–406

    Article  PubMed  CAS  Google Scholar 

  77. Holbrook LM, Watkins NA, Simmonds A, Jones CI, Ouwehand WH, Gibbins JM (2010) Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. Br J Haematol 148:627–637

    Article  PubMed  CAS  Google Scholar 

  78. Gilbert J, Ou W, Silver J, Benjamin T (2006) Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J Virol 80:10868–10870

    Article  PubMed  CAS  Google Scholar 

  79. Jain S, McGinnes LW, Morris TG (2008) Overexpression of thiol/disulfide isomerases enhances membrane fusion directed by the Newcastle disease virus fusion protein. J Virol 82:12039–12048

    Article  PubMed  CAS  Google Scholar 

  80. Gallina A, Hanley TM, Mandel R, Trahey M, Broker CC, Viglianti GA, Ryser HJ-P (2002) Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent HIV-1 entry. J Biol Chem 277:50579–50588

    Article  PubMed  CAS  Google Scholar 

  81. Wang Z, Zhou Z, Guo ZY, Chi CW (2010) Snapshot of the interaction between HIV envelope glycoprotein 120 and protein disulfide isomerase. Acta Biochim Biophys 42:358–362

    CAS  Google Scholar 

  82. Wang L, Wang L, Vavassori S, Li S, Ke H, Anelli T, Degano M, Ronzoni R, Sitia R, Sun F, Wang CC (2008) Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxy-terminal tail. EMBO reports 9:642–647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Matilde García Espitia for technical assistance, Victor Hugo Rosales G. for flow cytometry assistance, Ana Laura Luna Torres for statistical analysis, Mary Ann Gawinowicz for Maldi-ToF analysis, and Juan Ernesto Ludert for his critical comments on the manuscript.

This project was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT-60883) and the Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (SIP-20070712 and 20120932).

Tania Vega has scholarships from the Programa Institucional de Formación de Investigadores (PIFI-IPN), the Secretaría de Investigación y Posgrado (IPN) and the Instituto de Ciencia y Tecnología (DF).

Dr. Juan Salas and Dr. Mónica De Nova have fellowships from the Comisión de Operación y Fomento a las Actividades Académicas (COFAA) and the Estímulo al Desempeño de los Investigadores (EDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Santiago Salas-Benito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2012_1596_MOESM1_ESM.ppt

Supplemental material 1. Viral binding determined in immunofluorescence assay. C6/36 cells were incubated at 4 °C with specific antibodies against heat shock, PDI, and ERp44 proteins, with an unrelated antibody (IgG), or without antibodies (2° Ab and C6-DENV4). Then, DENV 4 was added, followed by incubation at 4 °C and detection with an anti-DENV complex antibody in non-permeabilised cells. C6/36 cells without virus were included as a control (2° Ab). The nuclei were stained with DAPI, and the cells were visualised using an immunofluorescence microscope.

705_2012_1596_MOESM2_ESM.ppt

Supplemental material 2. Viral infection as determined by immunofluorescence assay. A, C6/36 cells were incubated at 4 °C with specific antibodies (indicated in each photograph), with an unrelated antibody (IgG), or without antibodies (2° Ab and C6-DENV4). Then, DENV 4 was added and detected 24 h post-infection with an anti-DENV-complex antibody. Uninfected cells were included as a control (2° Ab). The nuclei were stained with DAPI, and the cells were visualised with an immunofluorescence microscope

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega-Almeida, T.O., Salas-Benito, M., De Nova-Ocampo, M.A. et al. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol 158, 1189–1207 (2013). https://doi.org/10.1007/s00705-012-1596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1596-0

Keywords

Navigation