Skip to main content
Log in

Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

We simulated changes in annual maximum 5-day rainfall (RX5D) and annual maximum number of consecutive dry days (CDD) in Central America, Mexico, and the Caribbean with three different horizontal resolution atmospheric global general circulation models (AGCMs) and quantified the uncertainty of the projections. The RX5Ds and CDDs were projected to increase in most areas in response to global warming. However, consistent changes were confined to small areas: for RX5D, both coastal zones of northern Mexico and the Yucatan Peninsula; for CDD, the Pacific coastal zone of Mexico, the Yucatan Peninsula, and Guatemala. All three AGCMs projected that RX5Ds and CDDs averaged over only the land area and over the entire area (land and ocean) would increase. The dependence of RX5D probability density functions on the horizontal resolutions was complex. Precipitation unrelated to tropical cyclones was primarily responsible for the projected increases in the frequency of RX5Ds greater than 300 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Bolvin DT, Curtis S, Nelkin EJ (2000) Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J Appl Meteorol l39:2007–2023. doi:10.1175/1520-0450(2001)040<2007:TRDDUT>2.0.CO;2

    Article  Google Scholar 

  • Aguilar E et al (2005) Changes in precipitation and temperature extremes in Central America and northern South America. 1961–2003. J Geophys Res 110, D23107

    Article  Google Scholar 

  • Arritt RW, Rummukainen M (2011) Challenges in regional-scale climate modeling. Bull Amer Meteor Soc 92:365–368. doi:10.1175/2010BAMS2971.1

    Article  Google Scholar 

  • Bao L, Gneiting T, Grimit EP, Guttorp P, Raftery AE (2010) Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Mon Weather Rev 138:1811–1821. doi:10.1175/2009MWR3138.1

    Article  Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A:57–73

    Article  Google Scholar 

  • Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2011) Future climate of the Caribbean from a regional climate model. Int J Climatol 31:1866–1878. doi:10.1002/joc.2200

    Article  Google Scholar 

  • Cheng C-T, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Climate 21:1605–1621. doi:10.1175/2007JCLI1494.1

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon SD (ed) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Fábrega J, Nakaegawa T, Pinzón R, Nakayama R, Arakawa O, SOUSEI Theme-CModeling group (2013) Hydroclimate projections for Panama in the late 21st century. Hydroll Res Lett 7:23–29. doi:10.3178/hrl.7.23

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climate extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33, L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Hall TC, Sealy AM, Stephenson TS, Taylor MA, Chen AA (2012) Future climate of the Caribbean from a super-high resolution atmospheric general circulation model. Theor Appl Climatol. doi:10.1007/s00704-012-0779-7

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50. doi:10.1175/1525-7541(2001)002 < 0036:GPAODD > 2.0.CO;2

    Article  Google Scholar 

  • Jiang H, Zipser EJ (2010) Contribution of tropical cyclones to the global precipitation from 8 seasons of TRMM data: regional, seasonal, and interannual variations. J Climate 23:1526–1543. doi:10.1175/2009JCLI3303.1

    Article  Google Scholar 

  • Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Cash BA, Kinter JL III, Marx L, Stan C, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Climate 25:3155–3172. doi:10.1175/JCLI-D-11-00265.1

    Article  Google Scholar 

  • Kamiguchi K, Kitoh A, Uchiyama T, Mizuta R, Noda A (2006) Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA 2:64–67. doi:10.2151/sola.2006-017

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS, Diaz HF (2008) Climate change scenario for Costa Rican montane forests. Geophys Res Lett 35, L11702. doi:10.1029/2008GL033940

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Climate Dynam 37:605–629. doi:10.1007/s00382-011, 1099–9

    Article  Google Scholar 

  • Kitoh A, Ose T, Kurihara K, Kusunoki S, Sugi M, KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: results of preliminary experiments. Hydrol Res Lett 3:49–53. doi:10.3178/hrl.3.49

    Article  Google Scholar 

  • Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late twenty-first century with the 20-km and 60-km mesh MRI-AGCM. J Geophys Res 116, D06105. doi:10.1029/2010JD014920

    Google Scholar 

  • Knaff JA (1997) Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J Climate 10:789–804

    Article  Google Scholar 

  • Knutson TR, Sureties JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364. doi:10.1038/ngeo202

    Article  Google Scholar 

  • Méndez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and Central America. J Climate 23:1175–1188. doi:10.1175/2009JCLI3080.1

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi:10.1038/nature09763

    Article  Google Scholar 

  • Mizuta R, Oouchi K, Yoshimura H, Noda A, Katayama K, Yukimoto S, Hosaka M, Kusunoki S, Kawai H, Nakagawa M (2006) 20-km-mesh global climate simulations using JMA-GSM model—mean climate states—. J Meteor Soc Japan 84:165–185

    Article  Google Scholar 

  • Mizuta R, Adachi Y, Yukimoto S, Kusunoki S (2008) Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Technical Report of the Meteorological Research Institute 56: 28

  • Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. SOLA 6:73–76. doi:10.2151/sola.2010-019

    Article  Google Scholar 

  • Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Climate 23:2699–2721. doi:10.1175/2010JCLI3338.1

    Article  Google Scholar 

  • Nakaegawa T, Kitoh A, Hosaka M (2013a) Discharge of major global rivers in the late 21st century climate projected with the high horizontal resolution MRI-AGCMs—overview—. Hydrol Process 27. doi:10.1002/hyp.9831

  • Nakaegawa T, Kitoh A, Ishizaki Y, Kusunoki S, Murakami H (2013b) Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int J Climatol 33. doi:10.1002/joc.3733

  • Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Nat Acad Sci 103:6110–6115. doi:10.1073/pnas.0601798103

    Article  Google Scholar 

  • Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification the Meso-American mid-summer drought in the twenty-first century. Climate Dyn 31:551–571. doi:10.1007/s00382-007-0359-1

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodgers EB, Adler RF, Pierce HF (2001) Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites. J Appl Meteor 40:1785–1800. doi:10.1175/1520-0450(2001)040<1785:COTCTT>2.0.CO;2

    Article  Google Scholar 

  • Senevirante SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB (ed) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230

    Chapter  Google Scholar 

  • Serra YL, Kiladis GN, Hodges KI (2010) Tracking and mean structure of easterly waves over the Intra-Americas Sea. J Climate 23:4823–4840. doi:10.1175/2010JCLI3223.1

    Article  Google Scholar 

  • Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. SOLA 5:164–167. doi:10.2151/sola.2009-042

    Article  Google Scholar 

  • Takaya Y, Yasuda T, Ose T, Nakaegawa T (2010) Predictability of the mean location of typhoon formation in a seasonal prediction experiment with a coupled general circulation model. J Meteor Soc Japan 88:799–812. doi:10.2151/jmsj.2010-502

    Article  Google Scholar 

  • Taylor MA, Whyte FS, Stephenson TS, Campbell JD (2012) Why dry? Investigating the future evolution of the Caribbean Low Level Jet to explain projected Caribbean drying. Int J Climatol 32:119–128. doi:10.1002/joc.3461

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Uchiyama T, Mizuta R, Kamiguchi K, Kitoh A, Noda A (2006) Changes in temperature-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA 2:68–71. doi:10.2151/sola.2006-018

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, p 160

    Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Vitart FD, Stockdale TN (2001) Seasonal forecasting of tropical storms using coupled GCM integrations. Mon Wea Rev 129:2521–2537. doi:10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2

    Article  Google Scholar 

  • Walsh K, Fiorino M, Landsea C, McInnes K (2007) Objectively-determined resolution-dependent threshold criteria for detection of tropical cyclones in climate models and reanalyses. J Climate 20:2307–2314. doi:10.1175/JCLI4074.1

    Article  Google Scholar 

  • Watanabe S, Kanae S, Seto S, Yeh PJF, Hirabayashi Y, Oki T (2012) Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models. J Geophys Res 117, D23114. doi:10.1029/2012JD018192

    Article  Google Scholar 

  • Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Climate 22:6653–6678. doi:10.1175/2009JCLI3049.1

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the "Development of Infrastructural Technology for Risk Information on Climate Change" of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The Earth Simulator of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) made it possible to perform the very large calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nakaegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakaegawa, T., Kitoh, A., Murakami, H. et al. Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor Appl Climatol 116, 155–168 (2014). https://doi.org/10.1007/s00704-013-0934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0934-9

Keywords

Navigation