Skip to main content

Advertisement

Log in

Nicotinic acetylcholine receptor expression on B-lymphoblasts of healthy versus schizophrenic subjects stratified for smoking: [3H]-nicotine binding is decreased in schizophrenia and correlates with negative symptoms

  • Biological Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Heavy smoking and schizophrenia are diversely associated with nicotinic acetylcholine receptor expression, as was shown for brain and lymphocytes. Most studies so far have not systematically differentiated between schizophrenia smokers and non-smokers and were confined either to in vivo or post-mortem study approaches. In order to avoid variable in vivo influences or post-mortem bias, we used stably transformed B-lymphoblast cultures derived from healthy and schizophrenia subjects stratified for smoking versus non-smoking in order to differentiate these clinical conditions with regard to nicotinic acetylcholine receptor expression and regulation. Receptor quantities were measured using [3H]-nicotine and [3H]-epibatidine binding. At baseline, [3H]-nicotine binding was not statistically different between healthy smokers and never-smokers (1.59 ± 0.73 vs. 1.26 ± 0.91 fmol/106 cells), while it was reduced in schizophrenia smokers compared to healthy smokers (1.05 ± 0.69 fmol vs. 1.44 ± 0.84/106 cells, P = 0.01). In schizophrenia, baseline [3H]-nicotine correlated inversely with higher PANSS negative subscale scores. After long-term nicotine incubation (1 μM), [3H]-nicotine binding increased in the group of schizophrenia smokers only (from 1.05 ± 0.69 to 1.54 ± 0.77 fmol/106 cells, P = 0.013), while [3H]-epibatidine binding decreased in this group (4.52 ± 1.52 to 3.82 ± 1.38 fmol/106 cells, P = 0.038). Our data are in further support of a decrease of nicotinic acetylcholine receptor expression in schizophrenia linked to negative psychotic symptoms, which may be counter-regulated by nicotine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benhammou K, Lee M, Strook M, Sullivan B et al (2000) [3H]-Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day. Neuropharmacology 39:2818–2829

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−) [3H]-nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Breese CR, Marks MJ, Logel J et al (1997) Effect of smoking history on [3H]-nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282:7–13

    PubMed  CAS  Google Scholar 

  • Breese CR, Lee MJ, Adams CE et al (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 23(4):351–364

    Google Scholar 

  • Cormier A, Zini R et al (2004) Long-term exposure to nicotine modulates the level and activity of acetylcholine receptors in white blood cells of smokers and model mice. Mol Pharmacol 66:1712–1718

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove KP, Batis J, Bois F et al (2009) Beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry 66:666–676

    Article  PubMed  CAS  Google Scholar 

  • Court JA, Lloyd S, Thomas N et al (1998) Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 87:63–78

    Article  PubMed  CAS  Google Scholar 

  • De Leon J, Tracy J, McCann E et al (2002) Schizophrenia and tobacco smoking: a replication study in another US psychiatric hospital. Schizophr Res 56:55–65

    Article  PubMed  Google Scholar 

  • De Leon J, Diaz FJ (2005) A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76:135–157

    Article  PubMed  Google Scholar 

  • D’Souza DC, Esterlis I, Krasenics M, Bois F, Radhakrishnan R, Sewell A, Ranganathan M, Pittman B, Seibyl J, Cosgrove K, Staley J (2011) Decreased beta2*-nAChR receptor availability in recently abstinent smokers with schizophrenia. Mol Psychiatry 69:204S (and personal communication)

  • Esterlis I, Mitsis EM, Batis JC, Bois F, Picciotto MR, Stiklus SM, Kloczynski T, Perry E, Seibyl JP, McKee S, Staley JK, Cosgrove KP (2011) Brain β2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler. Int J Neuropsychopharmacol 14:389–398

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M et al (1996) Structured clinical interview for DSM-IV axis i disorders (SCID). New York State Psychiatric Institute, Biometrics Research, New York

    Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in post-mortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  PubMed  CAS  Google Scholar 

  • Guan Z-Z, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. NeuroReport 10:1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Han ZY, Zoli M, Cardona A, Bourgeois JP, Changeux JP, Le Novère N (2003) Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin binding sites in the brain of Macaca mulatta. J Comp Neurol 461:49–60

    Article  PubMed  CAS  Google Scholar 

  • Heatherton TF, Kozlowski LT, Frecker RC et al (1991) The Fägerstrom test for nicotine dependence: a revision of the Fägerstrom tolerance questionnaire. Br J Addiction 86:1119–1127

    Article  CAS  Google Scholar 

  • Henning U, Krieger K, Loeffler S et al (2005) Increased levels of glucocorticoid receptors and enhanced glucocorticoid receptor auto-regulation after hydrocortisone challenge in B-lymphoblastoids from patients with affective disorders. Psychoneuroendocrinology 30:325–332

    Article  PubMed  CAS  Google Scholar 

  • Kao I, Drachman DB (1977) Thymic muscle cells bear acetylcholine receptors: possible relation to myasthenia gravis. Science 195(4273):74–85

    Article  PubMed  CAS  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bull 13(2):261–276

    CAS  Google Scholar 

  • Leonard S, Adler LE, Benhammou K et al (2001) Smoking and mental illness. Pharmacol Biochem Behav 70:561–570

    Article  PubMed  CAS  Google Scholar 

  • Lindenberg A, Brinkmeyer J, Dahmen N, Gallinat J, de Millas W, Mobascher A, Wagner M, Schulze-Rauschenbach S, Gründer G, Spreckelmeyer KN, Clepce M, Thürauf N, von der Goltz C, Kiefer F, Steffens M, Holler D, Díaz Lacava A, Wienker T, Winterer G (2011) The German multicenter study on smoking-related behavior—description of a population-based case-control study. Addict Biol 16:638–653

    Article  PubMed  Google Scholar 

  • Merz J, Lehrl S, Galster V et al (1975) The multiple selection vocabulary test (MSVT-B)—an accelerated intelligence test. Psychiatr Neurol Med Psychol (Leipzig) 27:423–428

    CAS  Google Scholar 

  • Mexal S, Berger R, Logel J, Ross R et al (2010) Differential regulation of α7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers. J Mol Neurosci 40:185–195

    Article  PubMed  CAS  Google Scholar 

  • Mobascher A, Winterer G (2008) The molecular and cellular neurobiology of nicotine abuse in schizophrenia. Pharmacopsychiatry 41(Suppl 1):51–59

    Google Scholar 

  • Mobascher A, Winterer G (2009) Nicotinic, cholinergic signaling in the human brain—the systems perspective. In: Tretter F, Winterer G, Gebicke-Haerter J, Mendoza ER (eds) Systems biology in psychiatric research. Wiley, Weinheim, p 161

    Google Scholar 

  • Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Human Genet 73:320–326

    Article  CAS  Google Scholar 

  • Ochoa EL, Lasalde-Dominicci J (2007) Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 27:609–639

    Article  PubMed  CAS  Google Scholar 

  • Perl O, Tal Ilani T, Rael D et al (2003) Τhe α7 nicotinic acetylcholine receptor in schizophrenia: decreased mRNA levels in peripheral blood lymphcytes. FASEB J. doi:10.1096/fj.03-0104fje

  • Perl O, Strous RD, Dranikov A, Chen R, Fuchs S (2006) Low levels of α7-nicotinic acetylcholine receptor mRNA on peripheral blood lymphocytes in schizophrenia and its association with illness severity. Neuropsychobiology 53:88–93

    Article  PubMed  CAS  Google Scholar 

  • Rollins B, Martin MV, Morgan L, Vawter MP (2010) Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 153B(4):919–936

    PubMed  CAS  Google Scholar 

  • Sato KZ, Fujii T, Watanabe Y et al (1999) Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci Lett 266:17–20

    Article  PubMed  CAS  Google Scholar 

  • Skok MV, Kalashnik EN, Koval LN et al (2003) Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Mol Pharmacol 64:885–889

    Article  PubMed  CAS  Google Scholar 

  • Skok MV, Grailhe R, Agenes F et al (2007) The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci 80:2334–2336

    Article  PubMed  CAS  Google Scholar 

  • Staley JK, Krishnan-Sarin S, Cosgrove KP et al (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707–8714

    Article  PubMed  CAS  Google Scholar 

  • Steiner AE, Wittliff JL (1985) A whole-cell assay for glucocorticoid binding sites in normal human lymphocytes. Clin Chem 11:1855–1860

    Google Scholar 

  • Toyabe S et al (1997) I Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice. Immunology 92:201–205

    Article  PubMed  CAS  Google Scholar 

  • Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Stoecker T, Shah NJ, Vossel S, Winterer G (2011) Direction and magnitude of nicotine effects on the fMRI BOLD response are related to nicotine effects on behavioral performance. Psychopharmacology (Berl) 215:333–344

    Article  CAS  Google Scholar 

  • Wuellner U, Gündisch D, Herzog H et al (2008) Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain. Neurosci Lett 430:34–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by an in-house grant of the Research Commission (Forschungskommission) of the Medical Faculty of the Heinrich-Heine-University Düsseldorf (S. F., U. H., C. L.) and by the Deutsche Forschungsgemeinschaft (DFG) as part of the study: “Attentional Network, Nicotine-Dependence and Alpha4Beta2 nAch Receptor Genotype in Healthy Subjects and Schizophrenic Patients” (G.W.:Wi1316/7-1) which was conducted within the framework of the National Priority Program “Nicotine: Molecular and physiological effects in CNS” supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Luckhaus.

Additional information

C. Luckhaus and U. Henning contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckhaus, C., Henning, U., Ferrea, S. et al. Nicotinic acetylcholine receptor expression on B-lymphoblasts of healthy versus schizophrenic subjects stratified for smoking: [3H]-nicotine binding is decreased in schizophrenia and correlates with negative symptoms. J Neural Transm 119, 587–595 (2012). https://doi.org/10.1007/s00702-011-0743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0743-1

Keywords

Navigation