Skip to main content
Log in

Pathological changes of the hippocampus and cognitive dysfunction following frontal lobe surgery in a rat model

  • Experimental Research - Brain Injury
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Postoperative cognitive dysfunction (POCD) is a known complication after intracranial surgery. Impaired hippocampal neurogenesis has been associated with cognitive dysfunction in animal models.

Methods

In order to assess hippocampal changes after brain surgery, a frontal lobe corticectomy was performed in ten adult Wistar rats (group 4). Three different control groups (n = 10 each) included no treatment (G1), general anesthesia alone (G2), and craniectomy without dural opening (G3). Twenty-four hours after surgery, half of the animals were killed, and the mRNA levels for IL-6, TNF-α, and brain-derived growth factor (BDNF) in the contralateral hippocampus were assessed by qPCR. Seven days later, the remaining animals underwent anxiety and memory testing. Afterwards, the number of immature neurons in the hippocampal cortex was measured by doublecortin (DCX) staining.

Results

Twenty-four hours after surgery, mRNA levels of IL-6 and TNF-α increased and BDNF decreased in both surgical groups G3 and G4 (p = 0.012). Cognitive tests demonstrated an increase in anxiety levels and memory impairment in surgical groups compared with non-surgical animals. These changes correlated with an inhibition of hippocampal neurogenesis evidenced by a decreased number of new neurons (mean ± SD for G1-4: 66.4 ± 24; 57.6 ± 22.2; 21.3 ± 3.78; 5.7 ± 1.05, p < 0.001, non-parametric ANOVA).

Conclusions

Intracranial surgery was demonstrated to induce an inflammatory reaction within the hippocampus that compromised neurogenesis and impaired normal cognitive processing. Corticectomy had a greater effect than craniotomy alone, indicating a central trigger for hippocampal inflammatory changes. POCD after craniotomy may originate from a central inflammatory response resulting from surgical trauma to the brain parenchyma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abildstrom H, Rasmussen LS, Rentowl P, Hanning CD, Rasmussen H, Kristensen PA, Moller JT (2000) Cognitive dysfunction 1–2 years after non-cardiac surgery in the elderly. ISPOCD group. International Study of Post-Operative Cognitive Dysfunction. Acta Anaesthesiol Scand 44(10):1246–1251

    Article  CAS  PubMed  Google Scholar 

  2. Bekinschtein P, Cammarota M, Medina JH (2014) BDNF and memory processing. Neuropharmacology 76:677–683

    Article  CAS  PubMed  Google Scholar 

  3. Biedler A, Juckenhöfel S, Larsen R, Radtke F, Stotz A, Warmann J, Braune E, Dyttkowitz A, Henning F, Strickmann B, Lauven PM (1999) Postoperative cognition disorders in elderly patients. the results of the “International Study of Postoperative Cognitive Dysfunction” ISPOCD 1). Anaesthesist 48(12):884–895

    Article  CAS  PubMed  Google Scholar 

  4. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bramham CR (2007) Control of synaptic consolidation in the dentate gyrus: mechanisms, functions, and therapeutic implications. Prog Brain Res 163:453–471

    Article  CAS  PubMed  Google Scholar 

  6. Canet J, Raeder J, Rasmussen LS, Enlund M, Kuipers HM, Hanning CD, Jolles J, Korttila K, Siersma VD, Dodds C, Abildstrom H, Sneyd JR, Vila P, Johnson T, Munoz Corsini L, Silverstein JH, Nielsen IK, Moller JT (2003) Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiol Scand 47(10):1204–1210

    Article  CAS  PubMed  Google Scholar 

  7. Cao X-Z, Ma H, Wang J-K, Liu F, Wu B-Y, Tian A-Y, Wang L-L, Tan W-F (2010) Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 34(8):1426–1432

    Article  CAS  PubMed  Google Scholar 

  8. Caza N, Taha R, Qi Y, Blaise G (2008) The effects of surgery and anesthesia on memory and cognition. Prog Brain Res 169:409–422

    Article  PubMed  Google Scholar 

  9. Chen K, Wei P, Zheng Q, Zhou J, Li J (2015) Neuroprotective effects of intravenous lidocaine on early postoperative cognitive dysfunction in elderly patients following spine surgery. Med Sci Monit 21:1402–1407

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chida K, Ogasawara K, Suga Y, Saito H, Kobayashi M, Yoshida K, Otawara Y, Ogawa A (2009) Postoperative cortical neural loss associated with cerebral hyperperfusion and cognitive impairment after carotid endarterectomy 123I-iomazenil SPECT study. Stroke. doi:10.1161/STROKEAHA.108.515775

    Google Scholar 

  11. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68(3):360–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DiPatri AJ, Pham M, Muro K (2009) Late effects of neurosurgery. Cancer Treat. Res, 7–22

  14. Failla MD, Juengst SB, Arenth PM, Wagner AK (2015) Preliminary associations between brain-derived neurotrophic factor, memory impairment, functional cognition, and depressive symptoms following severe TBI. Neurorehabil Neural Repair. doi:10.1177/1545968315600525

    Google Scholar 

  15. Griesbach GS, Hovda DA, Molteni R, Gomez-Pinilla F (2002) Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: reflections of injury-induced neuroplasticity. J Neurotrauma 19(7):803–814

    Article  PubMed  Google Scholar 

  16. Hillis AE, Anderson N, Sampath P, Rigamonti D (2000) Cognitive impairments after surgical repair of ruptured and unruptured aneurysms. J Neurol Neurosurg Psychiatry 69(5):608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, McBride WH (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33(3):619–626

    Article  CAS  PubMed  Google Scholar 

  18. Ji R-R, Xu Z-Z, Gao Y-J (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13(7):533–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24(1):171–189

    Article  CAS  PubMed  Google Scholar 

  20. Leal G, Afonso PM, Salazar IL, Duarte CB (2014) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. doi:10.1016/j.brainres.2014.10.019

    PubMed  Google Scholar 

  21. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW (2010) Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 86(2):132–144

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin G-X, Wang T, Chen M-H, Hu Z-H, Ouyang W (2014) Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol Scand 58(6):668–674

    Article  CAS  PubMed  Google Scholar 

  23. Lin S-Y, Yin Z-L, Gao J, Zhou L-J, Chen X (2014) Effect of acupuncture-anesthetic composite anesthesia on the incidence of POCD and TNF-alpha, IL-1beta, IL-6 in elderly patients. Zhongguo Zhong Xi Yi Jie He Za Zhi 34(7):795–799

    CAS  PubMed  Google Scholar 

  24. Lunn S, Crawley F, Harrison MJG, Brown MM, Newman SP (1999) Impact of carotid endarterectomy upon cognitive functioning. Cerebrovasc Dis 9(2):74–81

    Article  CAS  PubMed  Google Scholar 

  25. Ma Y, Cheng Q, Wang E, Li L, Zhang X (2015) Inhibiting tumor necrosis factor-α signaling attenuates postoperative cognitive dysfunction in aged rats. Mol Med Rep 12(2):3095–3100

    CAS  PubMed  Google Scholar 

  26. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, Van Beem H, Fraidakis O, Silverstein JH, Beneken JEW, Gravenstein JS (1998) Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet 351(9106):857–861

    Article  CAS  PubMed  Google Scholar 

  27. Mumby DG, Gaskin S, Glenn MJ, Schramek TE, Lehmann H (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9(2):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oomen CA, Bekinschtein P, Kent BA, Saksida LM, Bussey TJ (2014) Adult hippocampal neurogenesis and its role in cognition. Wiley Interdiscip Rev Cogn Sci 5(5):573–587

    Article  PubMed  PubMed Central  Google Scholar 

  29. Otawara Y, Ogasawara K, Ogawa A, Yamadate K (2005) Cognitive function before and after surgery in patients with unruptured intracranial aneurysm. Stroke 36(1):142–143

    Article  PubMed  Google Scholar 

  30. Parihar VK, Acharya MM, Roa DE, Bosch O, Christie L-A, Limoli CL (2014) Defining functional changes in the brain caused by targeted stereotaxic radiosurgery. Transl Cancer Res 3(2):124–137

    PubMed  PubMed Central  Google Scholar 

  31. Peng L, Xu L, Ouyang W (2013) Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One 8(11):e79624

    Article  PubMed  PubMed Central  Google Scholar 

  32. Radtke FM, Franck M, Herbig TS, Papkalla N, Kleinwaechter R, Kork F, Brockhaus WR, Wernecke K-D, Spies CD (2012) Incidence and risk factors for cognitive dysfunction in patients with severe systemic disease. J Int Med Res 40(2):612–620

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen LS, Johnson T, Kuipers HM, Kristensen D, Siersma VD, Vila P, Jolles J, Papaioannou A, Abildstrom H, Silverstein JH, Bonal JA, Raeder J, Nielsen IK, Korttila K, Munoz L, Dodds C, Hanning CD, Moller JT (2003) Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiol Scand 47(3):260–266

    Article  CAS  PubMed  Google Scholar 

  34. Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 35(12):4942–4952

    Article  CAS  PubMed  Google Scholar 

  35. Richardson JTE (1991) Cognitive performance following rupture and repair of intracranial aneurysm. Acta Neurol Scand 83(2):110–122

    Article  CAS  PubMed  Google Scholar 

  36. Schober ME, Block B, Requena DF, Hale MA, Lane RH (2012) Developmental traumatic brain injury decreased brain-derived neurotrophic factor expression late after injury. Metab Brain Dis 27(2):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seo JS, Park SW, Lee YS, Chung C, Kim YB (2014) Risk factors for delirium after spine surgery in elderly patients. J Korean Neurosurg Soc 56(1):28–33

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi C, Yang C, Gao R, Yuan W (2015) Risk factors for delirium after spinal surgery: a meta-analysis. World Neurosurg. doi:10.1016/j.wneu.2015.05.057

    Google Scholar 

  39. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 110(3):548–555

    Article  PubMed  Google Scholar 

  40. Strøm C, Rasmussen LS (2014) Challenges in anaesthesia for elderly. Singapore Dent J 35C:23–29

    Article  PubMed  Google Scholar 

  41. Vacas S, Degos V, Feng X, Maze M (2013) The neuroinflammatory response of postoperative cognitive decline. Br Med Bull 106:161–178

    Article  CAS  PubMed  Google Scholar 

  42. Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82

    Article  CAS  PubMed  Google Scholar 

  43. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang F (2014) Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 20:1908–1912

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Chang X, She L, Xu D, Huang W, Poo M (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35(22):8384–8393

    Article  CAS  PubMed  Google Scholar 

  47. Weber CF, Friedl H, Hueppe M, Hintereder G, Schmitz-Rixen T, Zwissler B, Meininger D (2009) Impact of general versus local anesthesia on early postoperative cognitive dysfunction following carotid endarterectomy: GALA Study Subgroup Analysis. World J Surg 33(7):1526–1532

    Article  PubMed  Google Scholar 

  48. Zheng XU, Ma Z, Gu X (2015) Plasma levels of tumor necrosis factor-α in adolescent idiopathic scoliosis patients serve as a predictor for the incidence of early postoperative cognitive dysfunction following orthopedic surgery. Exp Ther Med 9(4):1443–1447

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of Dr. Pablo Argibay, a true master for all of us. This work was supported by a grant from “Hospital Italiano de Buenos Aires”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Goldschmidt.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Funding

This work was supported by a grant from “Hospital Italiano de Buenos Aires”.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hem, S., Albite, R., Loresi, M. et al. Pathological changes of the hippocampus and cognitive dysfunction following frontal lobe surgery in a rat model. Acta Neurochir 158, 2163–2171 (2016). https://doi.org/10.1007/s00701-016-2938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-016-2938-6

Keywords

Navigation