Skip to main content
Log in

A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new type of carbon ceramic electrode modified with bismuth oxide nanoparticles (referred to as Bi-CCE) was fabricated via the sol-gel method. The Bi-CCE was applied to the determination of syringic acid by square wave adsorptive stripping voltammetry. The electrochemical properties of the Bi-CCE and the voltammetric response to syringic acid were investigated by cyclic voltammetry. The effects of the pH value of supporting electrolyte, of accumulation potential, accumulation time, SW mode parameters, and of possible interferents were tested. Under optimized conditions, the oxidation peak current (best measured at 0.8 V vs Ag/AgCl after an accumulation time of 20 s) increases linearly in the 0.4 to 24 μmol·L−1 syringic acid concentration range. Other figures of merit include an LOD of 47 nmol·L−1, a sensitivity of 3.3 μA·μmol−1·L·cm−2, and a relative standard deviation of 4.7% (for n = 5) at 2 μmol·L−1 of syringic acid. The method was successfully applied to the determination of syringic acid in red, white and rose wine as well as water samples.

Schematic presentation of the preparation of carbon ceramic electrode (CCE) containing Bi2O3 nanoparticles and its application in square wave adsorptive stripping voltammetric (SW AdSV) determination of syringic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J, Lu J, Hocoeevar SB, Farias PAM, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72(14):3218–3222

    Article  CAS  Google Scholar 

  2. Królicka A, Bobrowski A (2004) Bismuth film electrode for adsorptive stripping voltammetry – electrochemical and microscopic study. Electrochem Commun 6(2):99–104

    Article  Google Scholar 

  3. Švancara I, Prior C, Hočevar SB, Wang J (2010) A decade with bismuth–based electrodes in electroanalysis. Electroanalysis 22(13):1405–1420

    Article  Google Scholar 

  4. Guzsvány V, Kádár M, Gaál F, Bjelica L, Tóth K (2006) Bismuth film electrode for the cathodic electrochemical determination of thiamethoxam. Electroanalysis 18(13–14):1363–1371

    Article  Google Scholar 

  5. Guzsvány V, Kádár M, Papp Z, Bjelica L, Gaál F, Tóth K (2008) Monitoring of photocatalytic degradation of selected neonicotinoid insecticides by cathodic voltammetry with a bismuth film electrode. Electroanalysis 20(3):291–300

    Article  Google Scholar 

  6. Baś B, Węgiel K, Jedlińska K (2015) The renewable bismuth bulk annular band working electrode: fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II). Anal Chim Acta 881:44–53

    Article  Google Scholar 

  7. Armstrong KC, Tatum CE, Dansby-Sparks RN, Chambers JQ, Xue ZL (2010) Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82(2):675–680

    Article  CAS  Google Scholar 

  8. Baś B, Węgiel K, Jedlińska K (2015) New voltammetric sensor based on the renewable bismuth bulk annular band electrode and its application for the determination of palladium(II). Electrochim Acta 178:665–672

    Article  Google Scholar 

  9. Węgiel K, Jedlińska K, Baś B (2016) Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry. J Hazard Mater 310:199–206

    Article  Google Scholar 

  10. Węgiel K, Grabarczyk M, Kubiak WW, Baś B (2017) A reliable and sensitive Voltammetric determination of Mo(VI) at the in situ renovated bismuth bulk annular band electrode. J Electrochem Soc 164(6):352–357

    Article  Google Scholar 

  11. Węgiel K, Robak J, Baś B (2017) Voltammetric determination of iron with catalytic system at a bismuth bulk annular band electrode electrochemically activated. RSC Adv 7:22027–22033

    Article  Google Scholar 

  12. Tall OE, Beh D, Jaffrezic-Renault N, Vittori O (2010) Electroanalysis of some nitro-compounds using bulk bismuth electrode. Int J Environ Analyt Chem 90(1):40–48

    Article  Google Scholar 

  13. Prchal V, Ottenschlagerova A, Vyskocil V, Barek J (2016) Voltammetric determination of 5-nitroindazole using a bismuth bulk electrode. Anal Lett 49(1):49–55

    Article  CAS  Google Scholar 

  14. Węgiel K, Baś B (2017) Voltammetric characteristics and determination of clothianidin using a bismuth bulk annular band electrode regenerated in situ. Ionics. https://doi.org/10.1007/s11581-017-2105-y

  15. Królicka A, Pauliukaite R, Švancara I, Metelka R, Bobrowski A, Norkus E, Kalcher K, Vytřas K (2002) Bismuth-film-plated carbon paste electrodes. Electrochem Commun 4(2):193–196

    Article  Google Scholar 

  16. Yang D, Wang L, Chen Z, Megharaj M, Naidu R (2014) Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim Acta 181(11–12):1199–1206

    Article  CAS  Google Scholar 

  17. Kruusma J, Banks CE, Compton RG (2004) Mercury–free sono–electroanalytical detection of lead in human blood by use of bismuth–film–modified boron–doped diamond electrodes. Anal Bioanal Chem 379(4):700–706

    Article  CAS  Google Scholar 

  18. Niu P, Fernández-Sánchez C, Gich M, Navarro-Hernández C, Fanjul-Bolado P, Roig A (2016) Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 183(2):617–623

    Article  CAS  Google Scholar 

  19. Li Y, Sun G, Zhang Y, Ge C, Bao N, Wang Y (2014) A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry. Microchim Acta 181(7–8):751–757

    Article  CAS  Google Scholar 

  20. Hu X, Pan D, Lin M, Han H, Li F (2016) Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters. Microchim Acta 183(2):855–861

    Article  CAS  Google Scholar 

  21. Stoytcheva M, Zlatev R, Montero G, Velkova Z, Gochev V (2017) Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim Acta 184(8):2707–2714

    Article  CAS  Google Scholar 

  22. Liu L, Ma Z, Zhu X, Alshahrani LA, Tie S, Nan J (2016) A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim Acta 183(12):3293–3301

    Article  CAS  Google Scholar 

  23. Devasenathipathy R, Karthik R, Chen SM, Ali MA, Mani V, Lou BS, Al-Hemaid FMA (2015) Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on reduced graphene oxide. Microchim Acta 182(13–14):2165–2172

    Article  CAS  Google Scholar 

  24. Cerovac S, Guzsvány V, Email Kónya Z, Ashrafi AM, Švancara I, Rončević S, Kukovecz Á, Dalmacija B, Vytřas K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649

    Article  CAS  Google Scholar 

  25. Zheng J, Sheng Q, Li L, Shen Y (2007) Bismuth hexacyanoferrate–modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine. J Electroanal Chem 611(1–2):155–161

    Article  CAS  Google Scholar 

  26. Robak J, Burnat B, Leniart A, Kisielewska A, Brycht M, Skrzypek S (2016) The effect of carbon material on the electroanalytical determination of 4-chloro-3-methylphenol using the sol-gel derived carbon ceramic electrodes. Sensor Actuat B-Chem 236:318–325

    Article  CAS  Google Scholar 

  27. Arribas AS, Martinez-Fernandez M, Chicharro M (2012) The role of electroanalytical techniques in analysis of polyphenols in wine. Track-Trend Anal Chem 34:78–96

    Article  CAS  Google Scholar 

  28. Kim KH, Tsao R, Yang R, Cui SW (2005) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95(3):466–473

    Article  Google Scholar 

  29. Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogeorgou E, Kouimtzoglou E, Blekas G, Boskou D, Gravanic A, Castanas E (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 6:63–74

    Article  Google Scholar 

  30. Huang Y, Lu W, Chen B, Wu M, Li S (2015) Determination of 13 phenolic compounds in Rice wine by high–performance liquid chromatography. Food Anal Methods 8(4):825–832

    Article  Google Scholar 

  31. Martelo-Vidal MJ, Vázquez M (2014) Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Food Chem 158:28–34

    Article  CAS  Google Scholar 

  32. Ciepiela F, Sordoń W, Jakubowska M (2015) Principal components – based techniques in Voltammetric determination of Caffeic, Syringic and Vanillic acids. Electroanalysis 28(3):54–554

    Google Scholar 

  33. Sordoń W, Salachna A, Jakubowska M (2016) Voltammetric determination of caffeic, syringic and vanillic acids taking into account uncertainties in both axes. J Electroanal Chem 764:23–30

    Article  Google Scholar 

  34. Tslonsky M, Gun G, Glezer V, Lev O (1994) Sol–gel derived ceramic–carbon composite electrodes: introduction and scope applications. Anal Chem 66(10):1747–1753

    Article  Google Scholar 

  35. Sun W, Xi M, Zhang L, Zhan T, Gao H, Jiao K (2010) Electrochemical behaviors of thymine on a new ionic liquid modified carbon electrode and its detection. Electrochim Acta 56(1):222–226

    Article  CAS  Google Scholar 

  36. Petković BB, Stanković D, Milčić M, Sovilj SP, Manojlović D (2014) Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples. Talanta 132:513–519

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Bogusław Baś from AGH University of Science and Technology in Cracow for help in preparation of the electrodes and for his very helpful hints.

This work was supported by the Polish National Science Centre (Project No. 2015/19/B/ST5/01380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Robak.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robak, J., Węgiel, K., Burnat, B. et al. A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry. Microchim Acta 184, 4579–4586 (2017). https://doi.org/10.1007/s00604-017-2504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2504-9

Keywords

Navigation