Skip to main content
Log in

Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethylphosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel.

This technique was based on combining 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, which is known to non-biofouling compound, photocleavable linker (PL) that was modified to localize cells and to connect between MPC polymer and amino-terminated silanized surface. Using ultraviolet (UV) light illumination, MPC polymer can be selectively eliminated by photochemical reaction in order which resulted in micropatterning of multiple biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kusnezow W, Hoheisel JD (2003) Solid supports for microarray immunoassays. J Mol Recognit 16:165–176

    Article  CAS  Google Scholar 

  2. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  Google Scholar 

  3. Haab BB, Dunham MJ, Brown PO (2001) Protein microarray for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2:1–13

    Article  Google Scholar 

  4. Campbell RE (2009) Fluorescent-protein based biosensors: modulation of energy transfer as a design principle. Anal Chem 81:5972–5979

    Article  CAS  Google Scholar 

  5. Chalmeau J, Salomé L, Thibault C, Severac C, Vieu C (2007) Elaboration of micro-domains of supported bilayer membranes using micro-contact printing. Microelectron Eng 84:1754–1757

    Article  CAS  Google Scholar 

  6. Iversen L, Cherouati N, Berthing NT, Stamou D, Martinez KL (2008) Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality. Langmuir 24:6375–6381

    Article  CAS  Google Scholar 

  7. Mooney JF, Hunt AJ, Mcintosh JR, Liberko CA, Walba DM, Rogers CT (1996) Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc Natl Acad Sci 93:12287–12291

    Article  CAS  Google Scholar 

  8. Flounders AW, Brandon DL, Bates AH (1997) Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosens Bioelectron 12:447–456

    Article  CAS  Google Scholar 

  9. Lim JH, Ginger DS, Lee KB, Heo J, Nam JM, Mirkin CA (2003) Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew Chem Int Ed 42:2309–2312

    Article  CAS  Google Scholar 

  10. Valiokas R, Vaitekonis A, Klenkar G, Trinkunas G, Liedberg B (2006) Selective recruitment of membrane protein complexes onto gold substrates patterned by dip-pen nanolithography. Langmuir 22:3456–3460

    Article  CAS  Google Scholar 

  11. Gu J, Yam CM, Li S, Cai C (2004) Nanometric protein arrays on protein-resistant monolayers on silicon surfaces. J Am Chem Soc 126:8098–8099

    Article  CAS  Google Scholar 

  12. Maury P, Escalante M, Péter M, Reinhoudt DN, Subramaniam V, Huskens J (2007) Creating nanopatterns of His-Tagged proteins on surfaces by nanoimprint lithography using specific NiNTA-Histidine interactions. Small 9:1584–1592

    Article  Google Scholar 

  13. Escalante M, Zhao Y, Ludden MJW, Vermeij R, Olsen JD, Berenschot E, Hunter CN, Huskens J, Subramaniam V, Otto C (2008) Nanometer arrays of functional light harvesting antenna complexes by nanoimprint lithography and host−guest interactions. J Am Chem Soc 130:8892–8893

    Article  CAS  Google Scholar 

  14. Rundqvist J, Mendoza B, Werbin JL, Heinz WF, Lemmon C, Romer L, Haviland DB, Hoh JH (2007) High fidelity functional patterns of an extracellular matrix protein by electron beam-based inactivation. J Am Chem Soc 129:59–67

    Article  CAS  Google Scholar 

  15. Robin S, Gandhi AA, Gregor M, Laffir FR, Pecenik T, Pecenik A, Soulimane T, Tofail SAM (2011) Charge specific protein placement at submicrometer and nanometer scale by direct modification of surface potential by electron beam. Langmuir 27:14968–14974

    Article  CAS  Google Scholar 

  16. Shin DS, Lee KN, Jang KH, Kim JK, Jung WJ, Kim YK, Lee YS (2003) Protein patterning by maskless photolithography on hydrophilic polymer-grafted surface. Biosens Bioelectron 19:485–494

    Article  CAS  Google Scholar 

  17. Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen PCM, Kuhlmann J, Maan JC, Nüsse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer CM, Waldmann H (2008) Photochemical surface patterning by the thiol-ene reaction. Angew Chem Int Ed 47:4421–4424

    Article  CAS  Google Scholar 

  18. Khademhosseini A, Suh KY, Jon S, Eng G, Yeh J, Chen GJ, Langer R (2004) A soft lithographic approach to fabricate patterned microfluidic channels. Anal Chem 76:3675–3681

    Article  CAS  Google Scholar 

  19. Tsukahara T, Hibara A, Ikeda Y, Kitamori T (2007) NMR study of water molecules confined in extended nanospaces. Angew Chem Int Ed 46:1180–1183

    Article  CAS  Google Scholar 

  20. Akiyama Y, Yoshitake A, Morishima K, Kogi A, Kikutani Y, Tokeshi M, Kitamori T (2004) Rapid bonding of pyrex glass microchips. Electrophoresis 28:994–1001

    Article  Google Scholar 

  21. Balakirev MY, Porte S, Vernaz-Griz M, Berger M, Arié JP, Fouqué B, Chatelain F (2005) Photochemical patterning of biological molecules inside a glass capillary. Anal Chem 77:5474–5479

    Article  CAS  Google Scholar 

  22. Kaji H, Hashimoto M, Nishizawa M (2006) On-demand patterning of protein matrixes inside a microfluidic device. Anal Chem 78:5469–5473

    Article  CAS  Google Scholar 

  23. Jang K, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T (2009) Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micro patterning. Biomaterials 30:1413–1420

    Article  CAS  Google Scholar 

  24. Jang K, Sato K, Tanaka Y, Xu Y, Sato M, Nakajima T, Mawatari K, Konno T, Ishihara K, Kitamori T (2010) An efficient surface modification using 2-methacryloyloxyehtyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab Chip 10:1937–1945

    Article  CAS  Google Scholar 

  25. Holmes CP (1997) Model studies for new o-nitrobenzyl photolabile linkers: substituent effects on the rates of photochemical cleavage. J Org Chem 62:2370–2380

    Article  CAS  Google Scholar 

  26. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63

    Article  CAS  Google Scholar 

  27. Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22:355–360

    Article  CAS  Google Scholar 

  28. Xu Y, Takai M, Ishihara K (2009) Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials 30:4930–4938

    Article  CAS  Google Scholar 

  29. Sigal GB, Mrksich M, Whitesides GM (1998) Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc 120:3464–3473

    Article  CAS  Google Scholar 

  30. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Core Research of Evolutional Science & Technology (CREST) from Japan Science and Technology Agency (JST) and by the Global Center of Excellence for Mechanical Systems Innovation (GMSI) from The University of Tokyo Global COE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, K., Xu, Y., Sato, K. et al. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation. Microchim Acta 179, 49–55 (2012). https://doi.org/10.1007/s00604-012-0856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0856-8

Keywords

Navigation