Skip to main content
Log in

Thermal and flow analysis of two-dimensional fully developed flow in an AC magneto-hydrodynamic micropump

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The effect of fluctuating Lorentz force on the Ac magnetohydrodynamic micropump is studied. A two-dimensional transient fully developed laminar flow and temperature distribution are modeled. The governing Navier–Stokes and energy equations are solved numerically by a finite-difference (ADI) method. The effect of different parameters on the transient and steady flow velocity and temperature, such as aspect ratio, Hartman number, Prandtl number, and Eckert number is studied. The results obtained showed that controlling the flow and the temperature can be achieved by controlling the potential difference, the magnetic flux, and by a good choice of the electrical conductivity. The effect of Stanton number and phase angle is also included, and it is found that at high frequency, the pulsed volume is small which yield a continuous flow instead of pulsating flow, and the magnitude and direction of the flow can be controlled by the phase shift between the electrical and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

magnetic flux density (T)

C p :

specific heat (kJ/kg K)

E :

electric field intensity (V/m)

Ec :

Eckert number, \(Ec={u_0^2} \mathord{\left/ {\vphantom {{u_0^2}{C_p T_w}}} \right. \kern-\nulldelimiterspace} {C_p T_w}\)

h :

height of micro-channel (m)

Ha :

Hartman number, \(Ha=wB\sqrt {\sigma /\mu}\)

J :

electric current density (Amper/m2)

K :

thermal conductivity (W/m K)

L :

length of micro-channel (m)

P :

pressure \((N \mathord{\left/ {\vphantom {N {m^{2}}}} \right.\kern-\nulldelimiterspace} {\text {m}^{2}})\)

Pr :

Prandtl number, \(\ Pr ={\mu C_p} \mathord{\left/ {\vphantom {{\mu C_p} K}} \right. \kern-\nulldelimiterspace} K\)

P * :

dimensionless pressure gradient

S :

source term in energy equation

St :

Stanton number, \(St=\frac{w}{\sqrt {\nu T^\ast}}\)

t :

time (s)

T :

temperature (K)

T * :

period of alternations in electric and magneticfields

T w :

wall temperature (K)

u :

velocity component in the x direction

u * :

dimensionless velocity

V :

potential difference (volts)

w :

width of micro-channel (m)

x, y, z:

Cartesian coordinates

y*, z*:

dimensionless coordinates

μ:

dynamic viscosity \(({N\cdot s} \mathord{\left/ {\vphantom{{N\cdot s} {m^2}}} \right. \kern-\nulldelimiterspace} {m^2})\)

ρ:

density \(({{\text {kg}}} \mathord{\left/ {\vphantom {{kg} {m^3}}}\right. \kern-\nulldelimiterspace} {{\text {m}}^3})\)

υ:

kinematic viscosity \(({{\text {m}}^2} \mathord{\left/ {\vphantom{{m^2} s}} \right. \kern-\nulldelimiterspace} {\text {s}})\)

σ:

liquid’s conductivity \((\text {Siemens} \mathord{\left/{\vphantom {{Siemens} m}} \right. \kern-\nulldelimiterspace} {\text {m}})\)

α:

aspect ratio

τ:

dimensionless time

θ:

dimensionless temperature

ω:

angular frequency (rad/s)

ϕ:

phase shift angle (rad)

δ, ψ:

separation variables

References

  • Anderson J (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New York

  • Bau H, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators 79:207–215

    Article  Google Scholar 

  • Duwairi HM, Abdullah M (2007) Thermal and flow analysis of a magnetohydrodynamic micropump. Microsyst Technol 13(1):33–39

    Article  Google Scholar 

  • Eijkel J, Dalton C, Hayden C, Burt J, Manz A (2003) A circular ac magnetohydrodynamic micropump for chromatographic applications. Sens Actuators 92:215–221

    Article  Google Scholar 

  • Homsy A, Koster S, Eijkel J, Berg A, Lucklum F, Verpoorte E, Rooij F (2005) A high current density DC magnetohydrodynamic (MHD) micropump. Lab Chip 5:466–471

    Article  Google Scholar 

  • Jang J, Lee S (1998) MHD_Magnetohydrodynamic.Micropump Using Lorentz Force. In: MEMS symposium, ASME international mechanical engineering congress and exposition, Anaheim, Nov 15–20, pp 439–443

  • Jang J, Lee S (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators 80:84–89

    Article  Google Scholar 

  • Lemoff A, Lee A (2000) An AC magnetohydrodynamic micropump. Sens Actuators 63:178–185

    Article  Google Scholar 

  • Lemoff A, Lee A (2003) An ac magnetohydrodynamic microfluidic switch for micro total analysis systems. Biomed Microdevices 5(1):155–160

    Article  Google Scholar 

  • Lemoff A, Lee A, Miles R, McConaghy C (1999) An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system. In: Int conf on solid-state sensors and actuators (Transducers ’99) 1126–1129

  • Nguyen N, Huang X, Chuan T (2002) MEMS-micropumps: a review. Trans ASME 124:384–392

    Google Scholar 

  • Qian S, Bau H (2005) Magnetohydrodynamic flow of RedOx electrolyte. Phys Fluids 17:067105

    Article  Google Scholar 

  • Shoji S, Esashi M (1994) Microflow devices and systems. J Micromech Microeng 4:157–171

    Article  Google Scholar 

  • Woias P (2005) Micropumps-past, progress and future prospects. Sens Actuators B 105:28–38

    Article  Google Scholar 

  • Yi M, Qian S, Bau H (2002) A magnetohydrodynamic chaotic stirrer. J Fluid Mech 468:153–177

    Article  MATH  MathSciNet  Google Scholar 

  • Zhong J, Yi M, Bau H (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens Actuators 96:59–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh M. Duwairi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullah, M., Duwairi, H.M. Thermal and flow analysis of two-dimensional fully developed flow in an AC magneto-hydrodynamic micropump. Microsyst Technol 14, 1117–1123 (2008). https://doi.org/10.1007/s00542-008-0585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0585-4

Keywords

Navigation