Skip to main content
Log in

A pseudo-compressible variational multiscale solver for turbulent incompressible flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we design an explicit time-stepping solver for the simulation of the incompressible turbulent flow through the combination of VMS methods and artificial compressibility. We evaluate the effect of the artificial compressibility on the accuracy of the explicit formulation for under-resolved LES simulations. A set of benchmarks have been solved, e.g., the 3D Taylor–Green vortex problem in turbulent regimes. The resulting method is proven to be an effective alternative to implicit methods in some application ranges (in terms of problem size and computational resources), providing comparable results with very low memory requirements. As an example, with the explicit approach, we are able to solve accurately the Taylor-Green vortex benchmark in a fine mesh with \(512^3\) cells on a 12 cores 64 GB ram machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Badia S, Codina R (2008) Algebraic pressure segregation methods for the incompressible Navier–Stokes equations. Arch Comput Methods Eng 15(3):343–369

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia S, Codina R (2009) On a multiscale approach to the transient Stokes problem: dynamic subscales and anisotropic spacetime discretization. Appl Math Comput 207(2):415–433

    MathSciNet  MATH  Google Scholar 

  3. Badia S, Martín AF, Principe J (2014) A highly scalable parallel implementation of balancing domain decomposition by constraints. SIAM J Sci Comput 36(2):C190–C218

    Article  MathSciNet  MATH  Google Scholar 

  4. Badia S, Martín AF, Principe J (2015) Balancing domain decomposition at extreme scales. SIAM J Sci Comput (in press)

  5. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    Article  MathSciNet  MATH  Google Scholar 

  6. Boersma BJ, Kooper MN, Nieuwstadt TTM, Wesseling P (1997) Local grid refinement in Large-Eddy simulations. J Eng Math 32(2/3):161–175

    Article  MathSciNet  MATH  Google Scholar 

  7. Brachet ME (1991) Direct simulation of three-dimensional turbulence in the Taylor–Green vortex. Fluid Dyn Res 8(1):1–8

    Article  MathSciNet  Google Scholar 

  8. Brachet ME, Meiron D, Orszag S, Nickel BG, Morf RH, Frisch U (1983) Small-scale structure of the Taylor–Green vortex. J Fluid Mech 130:411–452

    Article  MATH  Google Scholar 

  9. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26

    Article  MATH  Google Scholar 

  10. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  11. Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput Vis Sci 4:167–174

    Article  MathSciNet  MATH  Google Scholar 

  12. Codina R, Principe J, Baiges J (2009) Subscales on the element boundaries in the variational two-scale finite element method. Comput Methods Appl Mech Eng 198:838–852

    Article  MathSciNet  MATH  Google Scholar 

  13. Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:2413–2430

    Article  MathSciNet  MATH  Google Scholar 

  14. Codina R, Soto O (2004) Approximation of the incompressible Navier–Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Methods Appl Mech Eng 193:1403–1419

    Article  MathSciNet  MATH  Google Scholar 

  15. Codina R, Zienkiewicz OC (2002) CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter. Commun Numer Methods Eng 18:99–112

    Article  MATH  Google Scholar 

  16. Colomés O, Badia S, Codina R, Principe J (2015) Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows. Comput Methods Appl Mech Eng 285:32–63

    Article  MathSciNet  Google Scholar 

  17. DeBonis J (2013) Solutions of the Taylor–Green vortex problem using high-resolution explicit finite difference methods. AIAA Paper 382:2013

    Google Scholar 

  18. Ding H, Shu C, Yeo KS, Xu D (2006) Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method. Comput Methods Appl Mech Eng 195(7):516–533

    Article  MATH  Google Scholar 

  19. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  MATH  Google Scholar 

  20. Gravemeier V (2006) The variational mulstiscale method for laminar and turbulent flow. Arch Comput Mech State Art Rev 13:249–324

    MathSciNet  MATH  Google Scholar 

  21. Guasch O, Codina R (2013) Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows. Comput Methods Appl Mech Eng 261–262:154–166

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes TJR, Feijoo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  24. John V (2005) An assessment of two models for the subgrid scale tensor in the rational LES model. J Comput Appl Math 173(1):57–80

    Article  MathSciNet  MATH  Google Scholar 

  25. Lesieur M, Staquet C, Le Roy P, Comte P (1988) The mixing layer and its coherence examined from the point of view of two-dimensional turbulence. J Fluid Mech 192:511–534

    Article  MathSciNet  Google Scholar 

  26. Malan AG, Lewis RW, Nithiarasu P (2002) An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application. Int J Numer Methods Eng 54(5):715–729

    Article  MATH  Google Scholar 

  27. Michalke A (1964) On the inviscid instability of the hyperbolic tangent velocity profile. J Fluid Mech 19:543–556

    Article  MathSciNet  MATH  Google Scholar 

  28. Moin P, Mahesh K (1998) Direct numerical simulation: a tool in turbulence research. Ann Rev Fluid Mech 30(1):539–578

    Article  MathSciNet  Google Scholar 

  29. Nithiarasu P (2003) An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. Int J Numer Methods Eng 56(13):1815–1845

    Article  MATH  Google Scholar 

  30. Rudi J, Malossi ACI, Isaac T, Stadler G, Gurnis M, Staar PWJ, Ineichen Y, Bekas C, Curioni A, Ghattas O (2015) An extreme-scale implicit solver for complex pdes: highly heterogeneous flow in earth’s mantle. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, p 5. ACM

  31. Wilcox DC (2006) Turbulence modeling for CFD. DCW Industries, Incorporated

  32. Yang J-Y, Yang S-C, Chen Y-N, Hsu C-A (1998) Implicit weighted eno schemes for the three-dimensional incompressible Navier–Stokes equations. J Comput Phys 146(1):464–487

    Article  MATH  Google Scholar 

Download references

Acknowledgments

S. Badia’s work has been partially funded by the European Research Council under the FP7 Program Ideas through the Starting Grant No. 258443—COMFUS: Computational Methods for Fusion Technology and the FP7 NUMEXAS project under grant agreement 611636. S. Badia and R. Codina gratefully acknowledge the support received from the Catalan Government through the ICREA Acadèmia Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Badia.

Appendix

Appendix

Here we illustrate the matrix-vector implementation in 2D for linear FEs for simplicity. The nodal shape function associated to node a is denoted by \(N^a(x)\) and its value at gauss point b is represent as \({ N_{b}^a }\). Every node a is represented by the lexicographical index \((i_a,j_a)\), with \(i_a,j_a = 0,1\). Further, given the \(\alpha \)-th axis direction, with \(\alpha = 1,2\), we define the function \(tw(a,\alpha ) = tw(i_a,j_a,\alpha )\) as \((1-i_a,j_a)\) for \(\alpha = 1\) and \((i_a,1-j_a)\) for \(\alpha = 2\). We use a nodal quadrature for the numerical integration, which leads to a lumped mass matrix. As a result, using the expression of the nodal shape functions and their derivatives on nodes, we get:

$$\begin{aligned} N^a(x_b)= & {} \delta _{a b}, \quad N^a(x_b) \delta _{a b}\quad \partial _\alpha N^a(x_b) \\= & {} - \partial _\alpha N^{tw(a,\alpha )}(x_b), \partial _\alpha N^a(x_{tw(a,\beta )}) \\= & {} \delta _{\alpha \beta } \partial _\alpha N^a(x_{a}), \end{aligned}$$

where \(x_b\) denotes the coordinates of the node b and \(\delta _{\alpha \beta }\) the Kronecker delta. Using these expressions, we can implement efficiently all the terms in our matrix-free formulation using the following expressions. The viscous term is implemented as follows:

$$\begin{aligned}&\int _K \partial _\beta u^\alpha (x) \partial _\beta N^a (x) \mathrm{d}{\varOmega }= \sum _{b=1}^4 \partial _\beta u^\alpha (x_b) \partial _\beta N^a_b \left| J \right| w_b \\&\quad = (\partial _\beta u^\alpha (x_a) + \partial _\beta u^\alpha (x_{tw(a,\beta )}) ) \partial _\beta N^a_a \left| J \right| w_a. \end{aligned}$$

The nonlinear convective term is implemented as:

$$\begin{aligned}&\int _K a_\beta \partial _\beta u^\alpha (x) a_\gamma \partial _\gamma N^a (x) \mathrm{d}{\varOmega }\\&\quad = \sum _{b=1}^4 (a_\beta \partial _\beta u^\alpha ) (x_b) a_\gamma (x_b) \partial _\gamma N^a_b \left| J \right| w_b \\&\quad = ((a_\beta \partial _\beta u^\alpha a_\gamma )(x_a) \\&\qquad + \; (a_\beta \partial _\beta u^\alpha a_\gamma ) (x_{tw(a,\gamma )}) )\partial _\gamma N^a_a \left| J \right| w_a. \end{aligned}$$

We proceed analogously for the rest of terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Badia, S. & Codina, R. A pseudo-compressible variational multiscale solver for turbulent incompressible flows. Comput Mech 58, 1051–1069 (2016). https://doi.org/10.1007/s00466-016-1332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1332-9

Keywords

Navigation