Skip to main content
Log in

Solving hyperelastic material problems by asymptotic numerical method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a numerical algorithm based on a perturbation technique named asymptotic numerical method (ANM) to solve nonlinear problems with hyperelastic constitutive behaviors. The main advantages of this technique compared to Newton–Raphson are: (a) a large reduction of the number of tangent matrix decompositions; (b) in presence of instabilities or limit points no special treatment such as arc-length algorithms is necessary. The ANM uses high order series approximation with auto-adaptive step length and without need of any iteration. Introduction of this expansion into the set of nonlinear equations results into a sequence of linear problems with the same linear operator. The present work aims at providing algorithms for applying the ANM to the special case of compressible and incompressible hyperelastic materials. The efficiency and accuracy of the method are examined by comparing this algorithm with Newton–Raphson method for problems involving hyperelastic structures with large strains and instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS TM (2008) Version 6.8, Hibbit, Karlsson and Sorensen Inc

  2. Abichou H, Zahrouni H, Potier-Ferry M (2002) Asymptotic numerical method for problems coupling several nonlinearities. Comput Methods Appl Mech Eng 191: 5795–5810

    Article  MATH  Google Scholar 

  3. Aggoune W, Zahrouni H, Potier-Ferry M (2004) High-order prediction–correction algorithms for unilateral contact problems. J Comput Appl Math 168: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  4. Aggoune W, Zahrouni H, Potier-Ferry M (2006) Asymptotic numerical method for unilateral contact. Int J Numer Method Eng 68: 605–631

    Article  MATH  MathSciNet  Google Scholar 

  5. Assidi M, Zahrouni H, Damil N, Potier-Ferry M (2009) Regularization and perturbation technique to solve plasticity problems. Int J Mater Form 2: 1–14

    Article  Google Scholar 

  6. Azrar L, Cochelin B, Damil N, Potier-Ferry M (1993) An asymptotic numerical method to compute the post-buckling behaviour of elastic plates and shells. Int J Numer Method Eng 36: 1251–1277

    Article  MATH  Google Scholar 

  7. Baker G, Graves-Morris P (1981) Padé Approximants, vol. 13. In: Encyclopedia of Mathematics and its Applications

  8. Balzani D, Neff P, Schröder J, Holzapfel G (2006) A polyconvex framework for soft biological tissues: adjustment to experimental data. Int J Solids Struct 43: 6052–6070

    Article  MATH  Google Scholar 

  9. Boutyour E, Zahrouni H, Potier-Ferry M, Boudi M (2004) Asymptotic numerical method for buckling analysis of shell structures with large rotations. J Comput Appl Math 168: 77–85

    Article  MATH  MathSciNet  Google Scholar 

  10. Boutyour E, Zahrouni H, Potier-Ferry M, Boudi M (2004) Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants. Int J Numer Methods Eng 60: 1987–2012

    Article  MATH  MathSciNet  Google Scholar 

  11. Charpentier I, Potier-Ferry M (2008) Automatic differentiation of the asymptotic numerical method: the diamant approach. C R Méca 336: 336–340

    Article  MATH  Google Scholar 

  12. Cochelin B (1994) A path following technique via an asymptotic numerical method. Comput Struct 53: 1181–1192

    Article  MATH  Google Scholar 

  13. Cochelin B, Damil N, Potier-Ferry M (1994) The asymptotic-numerical method: an efficient perturbation technique for non-linear structural mechanics. Rev Eur Eléments Finis 3: 281–297

    MATH  MathSciNet  Google Scholar 

  14. Cochelin B, Damil N, Potier-Ferry M (1994) Asymptotic numerical methods and Padé approximants for non linear elastic structures. Int J Numer Methods Eng 37: 1187–1213

    Article  MATH  MathSciNet  Google Scholar 

  15. Cochelin B, Damil N, Potier-Ferry M (2007) Méthode asymptotique numérique. Hermès Science Publications, Paris

    MATH  Google Scholar 

  16. Criscione J, Sacks M, Hunter W (2003) Experimentally tractable, pseudo-elastic constitutive caw for biomembranes: I. Theory. J Biomech Eng 125: 94–99

    Article  Google Scholar 

  17. Crisfield M (1991) Non-linear finite element analysis of solids and structures. Wiley, Chichester

    Google Scholar 

  18. Elhage-Hussein A, Damil N, Potier-Ferry M (1998) An asymptotic numerical algorithm for frictionless contact problems. Rev Eur Eléments Finis 7: 119–130

    Google Scholar 

  19. Elhage-Hussein A, Potier-Ferry M, Damil N (2000) A numerical continuation method based on Padé approximants. Int J Solids Struct 37: 6981–7001

    Article  MATH  MathSciNet  Google Scholar 

  20. Eriksson A (1991) Derivatives of tangential stiffness matrices for equilibrium path descriptions. Int J Numer Methods Eng 32: 1093–1113

    Article  MATH  Google Scholar 

  21. Frakley P, Payne A (1978) Theory and practice of enginnering with rubber. Applied Science Publishers, London

    Google Scholar 

  22. Galliet I (2000) Une version parallele des méthodes asymptotiques numériques: application a des structures complexes base d’lastomres. Ph.D. thesis, Universit de Marseille II, Marseille, France

  23. Gent A (1974) Rubber and rubber elasticity; a review. J Polym Sci Polym Symp 48: 1–17

    Article  Google Scholar 

  24. Gent A (1996) A new constitutive relation for rubber. Rubber Chem Technol 69: 59–61

    MathSciNet  Google Scholar 

  25. Holzapfel G (2000) Nonlinear solid mechanics : a continuum approach for engineering. Wiley, London

    MATH  Google Scholar 

  26. Holzapfel G, Gasser T (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61: 1–48

    Article  MATH  MathSciNet  Google Scholar 

  27. Humphrey J (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer, New York

    Google Scholar 

  28. Kouhia R (1999) Techniques for the analysis of non-linear systems with applications to solids and structural mechanics. Ph.D. thesis, In the series ’Acta Polytechnica Scandinavia’, Espoo, Finland

  29. Lahmam H, Cadou J, Zahrouni H, Damil N, Potier-Ferry M (2002) High-order predictor–corrector algorithms. Int J Numer Methods Eng 55: 685–704

    Article  MATH  Google Scholar 

  30. Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79: 835–858

    Google Scholar 

  31. Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192: 559–591

    Article  MATH  MathSciNet  Google Scholar 

  32. Mooney M (1940) A theory of large elastic deformations. J Appl Mech 11: 582–592

    Google Scholar 

  33. Mullins L, Thomas A (1963) The chemistery and physics of rubber-like substances. In: Bateman L (ed) Maclaren and Sons, London

  34. Najah A, Cochelin B, Damil N, Potier-Ferry M (1998) Effect of thermal residual stress and fiber packing on deformation of metal-matrix composites. Arch Comput Methods Eng 5: 31–50

    Article  MathSciNet  Google Scholar 

  35. Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198: 2099–2110

    Article  Google Scholar 

  36. Nezamabadi S, Zahrouni H, Yvonnet J, Potier-Ferry M (2010) A multiscale finite element approach for buckling analysis of elastoplastic long fiber composites. Int J Multiscale Comput Eng 3: 287–301

    Google Scholar 

  37. Nielsen P, Hunter P, Smaill B (1991) Biaxial testing of membrane biomaterials: testing equipment and procedures. J Biomech Eng 113: 295–300

    Article  Google Scholar 

  38. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2009) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81: 1180–1206

    MathSciNet  Google Scholar 

  39. Oden J (1972) Finite elements of non-linear continua. McGraw-Hill, New York

    Google Scholar 

  40. Oden J, Kikuchi N (1982) Finite element methods for constrained problems in elasticity. Int J Numer Methods Eng 18: 701–725

    Article  MATH  MathSciNet  Google Scholar 

  41. Ogden R (1972) Large deformation isotropic elastic—on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society A, vol 326, pp 565–584

  42. Ogden R (1982) Elastic deformation of rubber-like solids. In: Hopkins HG, Sewell MJ (eds) Mechanics of solids, The Rondey Hill 60th Anniversary Volume. Pergamon, Oxford

  43. Ogden R (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  44. Potier-Ferry M, Damil N, Braikat B, Descamps J, Cadou J, Cao H, Elhage Hussein A (1997) Traitement des fortes non linéarités par la méthode asymptotique numérique. C R Acad Sci Ser IIB 324: 171–177

    MATH  Google Scholar 

  45. Riks E (1984) Some computational aspects of the stability analysis of nonlinear structures. Comput Methods Appl Mech Eng 47: 219–259

    Article  MATH  Google Scholar 

  46. Rivlin R (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans R Soc Lond Ser A 241: 379–397

    Article  MATH  MathSciNet  Google Scholar 

  47. Sacks M (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125: 280–287

    Article  Google Scholar 

  48. Schröder J, Neff P, Balzani D (2005) A variational approach for materially stable anisotropic hyperelasticity. Int J Solids Struct 42: 4352–4371

    Article  MATH  Google Scholar 

  49. Treloar L (1975) The physics of rubber elasticity, 3rd edn. Oxford university press, Oxford

    Google Scholar 

  50. Valanis K, Landel R (1967) The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 38: 2997–3002

    Article  Google Scholar 

  51. Vannucci P, Cochelin B, Damil N, Potier-Ferry M (1998) An asymptotic-numerical method to compute bifurcated branches. Int J Numer Methods Eng 41: 1365–1389

    Article  MATH  Google Scholar 

  52. Yvonnet J, Zahrouni H, Potier-Ferry M (2007) A model reduction method for the post-buckling analysis of cellular microstructures. Comput Methods Appl Mech Eng 197: 265–280

    Article  MATH  MathSciNet  Google Scholar 

  53. Zahrouni H, Aggoune W, Brunelot J, Potier-Ferry M (2004) Asymptotic numerical method for strong nonlinearities. Rev Eur Eléments Finis 118: 13–97

    Google Scholar 

  54. Zahrouni H, Braikat B, Damil N, Potier-Ferry M (2005) Solving plasticity problems by a perturbation technique. In: Proceedings in Applied Mathematics and Mechanics, vol 5, pp 455–456

  55. Zahrouni H, Cochelin B, Potier-Ferry M (1999) Computing finite rotations of shells by an asymptotic numerical method. Comput Methods Appl Mech Eng 175: 71–85

    Article  MATH  Google Scholar 

  56. Zahrouni H, Potier-Ferry M, Elasmar H, Damil N (1998) Asymptotic numerical method for nonlinear constitutive laws. Rev Eur Eléments Finis 7: 841–869

    MATH  Google Scholar 

  57. Zienkiewicz O, Taylor R (2000) Finite element method, 5th edn. Volume 1—The Basis. Elsevier, Amsterdam

  58. Zulliger M, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37: 989–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Nezamabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezamabadi, S., Zahrouni, H. & Yvonnet, J. Solving hyperelastic material problems by asymptotic numerical method. Comput Mech 47, 77–92 (2011). https://doi.org/10.1007/s00466-010-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0531-z

Keywords

Navigation