Skip to main content
Log in

Biaxial Loading of Continuously Graded Thermoviscoplastic Materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we study the problem of biaxial loading of a sheet made of a continuously graded thermoviscoplastic material. The material phases are supposed to exhibit thermal softening, strain-rate sensitivity and strain hardening, continuously varying along all directions. First we formulate the plane stress problem of a non-homogeneous material and study the behavior of temperature, strain and strain-rate related to inhomogeneities of thermomechanical parameters and geometrical defects. Next we present the “effective” instability analysis of Dudzinski and Molinari (Int J Solids Struc 1991), adapted to the non-homogeneous case, to define the critical conditions and select the localization modes by studying the overall strains for which a certain level of instability growth is developed. Finally, we present the numerical simulation of the fully non-linear dynamical problem. Several aspects of the deformation process and the related role of non-homogeneities are analyzed onset of strain and temperature localization, ductility, contours of temperature increase as detectors of instability, interplay with initial defects, multiple necking, decrease of thinning-rate, variation of the multiple necking due to boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus Manuals (2004). Version 6.5 Hibbit, Karlson and Sorensen, Inc., Providence, USA

    Google Scholar 

  2. Aboudi J, Pindera M, Arnold SM (1999). Higher-order theory for functionallygraded materials. Compos Part B-Eng 30(8):777–832

    Article  Google Scholar 

  3. Aboudi J, Pindera M, Arnold SM (2003). Higher-order theory for periodic multiphase materials with inelastic phases. Int J Plast 19(6):805–847

    Article  MATH  Google Scholar 

  4. Anand L, Kim KH, Shawki TG (1987). Onset of shear localization in viscoplastic solids. J Mech Phys Solids 35(4):407–427

    Article  MATH  Google Scholar 

  5. Bai YL (1982). Thermo-plastic instability in simple shear. J Mech Phys Solids 30(4):195–207

    Article  MATH  Google Scholar 

  6. Bansal Y, Pindera MJ (2003). Efficient reformulation of the thermoelastic higher-order theory for functionally graded materials. J Therm Stress 26:1055–1092

    Article  Google Scholar 

  7. Bansal Y, Pindera MJ (2005). A second look at the higher-order theory for periodic multiphase materials. J Appl Mech 72(2):177–195

    Article  MATH  Google Scholar 

  8. Bathe KJ (1996). Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  9. Batra RC (1988). Steady state penetration of thermoviscoplastic targets. Computational Mechanics 3:1–12

    Article  MATH  Google Scholar 

  10. Batra RC, Kim CH (1990). Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials. Int J Plast 6:127–141

    Article  Google Scholar 

  11. Batra RC, Lear MH (2005). Adiabatic shear banding in plane strain tensile deformations of 11 thermoviscoplastic materials with finite thermal wave speed. Int J Plast 21:1521–1545

    Article  MATH  Google Scholar 

  12. Batra RC, Love BM (2004). Adiabatic shear bands in functionally graded materials. J Therm Stress 27:1101–1123

    Article  Google Scholar 

  13. Batra RC, Love BM (2005). Mesoscale analysis of shear bands in high strain rate deformations of tungsten/nickel-iron composites. J Therm Stress 28(6-7):747–782

    Google Scholar 

  14. Batra RC, Wei ZG (2005a) Shear band spacing in thermoviscoplastic materials. Int J Impact Eng (in press)

  15. Batra RC, Wei ZG (2005b) Shear bands due to heat flux prescribed at boundaries. Int J Plast (in press)

  16. Belytschko T, Liu WK, Moran B (2000). Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  17. Berezovski A, Engelbrecht J, Maugin GA (2003) Stress wave propagation in functionally graded materials. In: WCU 2003, Paris, pp 507–509

  18. Bonnet-Lebouvier AS, Molinari A, Lipinski P (2002). Analysis of the dynamic propagation of adiabatic shear bands. Int J Solids Struct 39(16):4249–4269

    Article  MATH  Google Scholar 

  19. Caurtney TH (2000). Mechanical behavior of materials. Material science/metallurgy series, McGraw-Hill, New York

    Google Scholar 

  20. Chan YS, Fannjiang AC, Paulino GH (2003). Integral equations with hypersingular kernels-theory and applications to fracture mechanics. Int J Eng Sci 41:683–720

    Article  MathSciNet  Google Scholar 

  21. Charalambakis N (1985). Time-asymptotic stability of non-Newtonian fluid of plastic solid. Mech Res Commun 12:311–317

    Article  MATH  MathSciNet  Google Scholar 

  22. Charalambakis N, Baxevanis T (2004). Adiabatic shearing of non-homogeneous thermoviscoplastic materials. Int J Plast 20:899–914

    Article  MATH  Google Scholar 

  23. Charalambakis N, Murat F (1989). Weak solutions to the initial-boundary problem for the shearing of non-homogeneous thermoviscoplastic materials. Proc R Soc Edinb 113A:257–265

    MathSciNet  Google Scholar 

  24. Charalambakis N, Murat F (2005a) Approximation by finite elements, existence and uniqueness for a model of stratified thermoviscoplastic materials. Ricerche di Matematica (in press)

  25. Charalambakis N, Murat F(2006) Homogenization of stratified thermoviscoplastic materials. Q Appl Math (in press)

  26. Chatzigeorgiou G, Charalambakis N (2005). Instability analysis of non-homogeneous materials under biaxial loading. Int J Plast 21(10):1970–1999

    Article  MATH  Google Scholar 

  27. Cheng ZQ, Batra RC (2000). Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos B 31:97–106

    Article  Google Scholar 

  28. Clifton RJ, Duffy J, Hartley KA, Shawki TJ (1984). On critical conditions for shear band formation at high strain rates. Scripta Metallurgica 18:443–448

    Article  Google Scholar 

  29. Dafermos CM, Hsiao L (1983). Adiabatic shearing of incompressible fluids with temperature dependent viscosity. Q Appl Math 41:45–58

    MATH  MathSciNet  Google Scholar 

  30. Dudzinski D, Molinari A (1991). Perturbation analysis of thermoviscoplastic instabilities in biaxial loading. Int J Solids Struct 27(5):601–628

    Article  MATH  Google Scholar 

  31. Georgievskii DV (2000). Viscoplastic stratified composites: shear flows and stability. Comput Struct 76:205–210

    Article  Google Scholar 

  32. Havner K (2004). On the onset of necking in the tensile test. Int J Plast 20(4-5):965–978

    Article  MATH  Google Scholar 

  33. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Mathematical and Physical Sciences. Royal Society of London A193, pp 281–297

  34. Hill R (1952). Mathematical theory of plasticity. Clarendon Press, Oxford

    Google Scholar 

  35. Hill R, Hutchinson JW (1975). Bifurcation phenomena in the plane tension test. J Mech Phys Solids 23:239–264

    Article  MATH  MathSciNet  Google Scholar 

  36. Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000). Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123

    Article  Google Scholar 

  37. Homma H, Shah QH, Kawada S (1995). Effect of temperature gradient on crack initiation. Int J Press Vessels Piping 63(3):339–345

    Article  Google Scholar 

  38. Jin ZH, Batra RC (1996). Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44:1221–1235

    Article  Google Scholar 

  39. Jin ZH, Batra RC (1998). R-curve and strength behavior of a functionally graded material. Mater Sci Eng A242:70–76

    Google Scholar 

  40. Liu Q, Jiang S (2003). Global existence and numerical approximation in adiabatic shearing of incompressible fluids. J Comput Appl Math 154(2):303–317

    Article  MATH  MathSciNet  Google Scholar 

  41. Molinari A (1985). Instabilité thermoplastique en cisaillement simple. Mécanique Théorique et Appliquée 4:659–684

    MATH  Google Scholar 

  42. Molinari A, Clifton R (1983). Localisation de la déformation viscoplastique en cisaillement simple, Résultats exacts en théorie non-linéaire. Comptes Rendus. Académie des Sciences II 296:1–4

    MATH  Google Scholar 

  43. Molinari A, Clifton R (1987) Analytical characterization of shear localisation. J Appl Mech 54:806–912

    Article  MATH  Google Scholar 

  44. Molinari A, Musquar C, Sutter G (2002). Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int J Plast 18(4):443–459

    Article  MATH  Google Scholar 

  45. Naboulsi SK, Palazotto AN (2001). Thermomicromechanical damage in composites. AIAA Stud J 39(1):141–152

    Google Scholar 

  46. Naboulsi SK, Palazotto AN (2003). Damage model for metal–matrix composite under high intensity loading. Int J Plast 19(4):435–468

    Article  MATH  Google Scholar 

  47. Ogawa K (2002) Application of shear localization to metal working. In: Khan AS, Lopez-Pamies O (eds) Plasticity, damage and fracture at micro, macro and nano scales, Neat Press, pp 657–659

  48. Ozturk M, Erdogan F (1993). The antisymmetric crack problem in a nonhomogeneous medium. J Appl Mech 60:406–413

    MATH  Google Scholar 

  49. Ozturk M, Erdogan F (1995). An axisymmetric crack in bonded materials with a nonhomogeneous interfacial zone under torsion. J Appl Mech 62:116–125

    MATH  Google Scholar 

  50. Paulino GH, Fannjiang AC, Chan YS (2003). Gradient elasticity theory for mode III fracture in functionally graded materials – Part I: crack perpendicular to the material gradation. J Appl Mech 70”(4):531–542

    Article  MATH  Google Scholar 

  51. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in Fortran 77: The art of scientific computing. Cambridge University Press, London

    Google Scholar 

  52. Rice JR (1976) The localization of plastic deformation. In: Koiter W (ed) Theor Appl Mech pp 207–220

  53. Rigatos A, Charalambakis N (1990). Stability conditions and numerical solutions on oscillatory thermoviscous shearing. Comput Mech 6:463–471

    Article  MATH  Google Scholar 

  54. Rigatos A, Charalambakis N (2001). Two-dimensional adiabatic Newtonian flow with temperature dependent viscosity. Int J Eng Sci 39(10):1143–1165

    Article  Google Scholar 

  55. Roessig KM, Mason JJ (1999). Adiabatic shear localization in the dynamic punch test, part I: experimental investigation. Int J Plast 15(3):241–262

    Article  MATH  Google Scholar 

  56. Rudnicki JW, Rice JR (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394

    Article  Google Scholar 

  57. Seto T, Nishimura T (2004). Study of two-dimensional elasticity on FGM. In: Proceedings of 21st international congress of theoretical and applied mechanics, Warsaw

  58. Shehadeh M, Zbib H, de la Rubia TD (2005). Multiscale dislocation dynamics simulations of shock compression in copper single crystal. Int J Plast 21:2369–2390

    Article  MATH  Google Scholar 

  59. Storen S, Rice JR (1975). Localized necking in thin sheets. J Mech Phys Solids 23:421–441

    Article  Google Scholar 

  60. Toth LS, Dudzinski D, Molinari A (1996). Forming limit predictions with the perturbation method using stress potential functions of polycrystal viscoplasticity. Int J Mech Sci 38(8–9):805–824

    Article  MATH  Google Scholar 

  61. Tzavaras AE (1986). Plastic shearing of materials exhibiting strain hardening or strain softening. Arch Ration Mech Anal 94:39–58

    Article  MATH  MathSciNet  Google Scholar 

  62. Tzavaras AE (1987). Effect of thermal softening in shearing of strain-rate dependent materials. Arch Ration Mech Anal 99:349–374

    Article  MATH  MathSciNet  Google Scholar 

  63. Tzavaras AE (1992). Nonlinear analysis techniques for shear band formation at high strain rates. Appl Mech Rev 45:82–94

    Article  MathSciNet  Google Scholar 

  64. Vel SS, Batra RC (2002). Exact solutions for thermoelastic deformations of functionally graded thick rectangular plates. AIAA Stud J 40(7):1421–1433

    Article  Google Scholar 

  65. Vel SS, Batra RC (2003). Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct 40:7181–7196

    Article  MATH  Google Scholar 

  66. Voyiadzis GZ, Abed FH (2005). Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech Mater 37(2-3):355–378

    Article  Google Scholar 

  67. Walter JW (1992). Numerical experiments on adiabatic shear band formation in one dimension. Int J Plast 8:657–693

    Article  Google Scholar 

  68. Wang BL, Han JC, Du S (2000). Cracks problem for non-homogeneous composite material subjected to dynamic loading. Int J Solids Struct 37(9):1251–1274

    Article  MATH  Google Scholar 

  69. Wright TW (2002). The physics and mathematics of shear bands. Cambridge University Press, London

    MATH  Google Scholar 

  70. Wu Y, Ling Z, Dong Z (2000). Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface. Int J Solids Struct 37(9):1275–1292

    Article  MATH  Google Scholar 

  71. Zhang ZJ, Paulino GH (2005). Cohesive zone modelling of dynamic failure in homogeneous and functionally graded materials. Int J Plast 21(6):1195–1254

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Charalambakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzigeorgiou, G., Charalambakis, N. & Kalpakides, V. Biaxial Loading of Continuously Graded Thermoviscoplastic Materials. Comput Mech 39, 335–355 (2007). https://doi.org/10.1007/s00466-006-0030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0030-4

Keywords

Navigation