Skip to main content
Log in

The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

A Correction to this article was published on 04 February 2020

Abstract

Lava rheology and effusion rate are critical factors in determining the evolution of lava flows. However, direct and accurate field measurements are difficult to carry out, and estimates are usually based on measurements of the flow’s surface velocity and assumptions of sub-surface geometry. Using numerical flow models, we show that the potential for error due to geometry uncertainty is minimized if a semi-elliptical cross-sectional channel shape is assumed. Flow is simulated for isothermal Newtonian, temperature-dependent Newtonian, and isothermal power-law rheology lavas. For isothermal Newtonian lava, we find that the error in channel shape alone can make apparent viscosity estimates ∼3.5 times too large (e.g., for inappropriate use of the Jeffreys equation on a narrow semi-elliptical channel). For a temperature-dependent rheology, using an analytical approximation for Newtonian flow in a semi-elliptical geometry yields apparent viscosity and flux values that are more accurate than estimates which assume a rectangular geometry, for all channel shapes considered, including rectangular channels. Viscosity calculations for real channels on Mauna Loa and Mount Etna show that for a Newtonian rheology, a semi-elliptical analytical solution gives an approximation three times closer to the actual viscosity than a rectangle with the same depth while, if the lava is shear-thinning (power law exponent m = 0.6), a rectangular approximation is 15 % more accurate. Our results can be used to bracket possible viscosity and flux estimates when channel topography is poorly constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey JE, Harris A, Dehn J, Calvari S, Rowland S (2006) The changing morphology of an open lava channel on Mt. Etna Bull Volcanol 68:497–515. doi:10.1007/s00445-005-0025-6

    Article  Google Scholar 

  • Baloga SM, Glaze LS, Crisp JA, Stockman SA (1998) New statistics for estimating the bulk rheology of active lava flows: Pu‘u ‘O‘o examples. J Geophys Res 103 (B3):5133–5142

    Article  Google Scholar 

  • Baloga SM, Mouginis-Mark PJ, Glaze LS (2003) Rheology of a long lava flow at Pavonis Mons. Mars J Geophys Res (Planets) 108 (E7):5066. doi:10.1029/2002JE001981

    Article  Google Scholar 

  • Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solutions of linear systems: Building blocks for iterative methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Batchelor G (1967) An introduction to fluid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. GSA Special Papers 395, pp 189–208

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120

    Article  Google Scholar 

  • Crisci G, Iovine G, Di Gregorio S, Lupiano V (2008) Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy). J Volcanol Geotherm Res 177:778–796

    Article  Google Scholar 

  • Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198. doi:10.1029/93JB02973

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221:485–509. doi:10.1017/S0022112090003640

    Article  Google Scholar 

  • Fink JH, Zimbelman JR (1986) Rheology of the 1983 Royal Gardens basalt flows, Kilauea Volcano, Hawaii. Bull Volcanol 48:87–96. doi:10.1007/BF01046544

    Article  Google Scholar 

  • Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Amer Ceram Soc 8:339–355. doi:10.1111/j.1151-2916.1925.tb16731.x

    Article  Google Scholar 

  • Fundis AT, Soule SA, Fornari D, Perfit MR (2010) Paving the seafloor: Volcanic emplacement processes during the 2005–2006 eruptions at the fast spreading east pacific rise, 9’50. N Geochem Geophys Geosys 11(8):Q08024

    Google Scholar 

  • Giordano D, Russell J, Dingwell D (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geotherm Res 96:145–159. doi:10.1016/S0377-0273(99)00148-1

    Article  Google Scholar 

  • Gregg TKP, Keszthelyi LP (2004) The emplacement of pahoehoe toes: Field observations and comparison to laboratory simulations. Bull Volcanol 66:381–391. doi:10.1007/s00445-003-0319-5

    Google Scholar 

  • Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62. doi:10.1017/S0022112003006517

    Article  Google Scholar 

  • Harris AJL, Allen JS (2008) One-, two-, and three-phase viscosity treatments for basaltic lava flows. J Geophys Res 113 (b12):B09212. doi:10.1029/2007JB005035

    Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. doi:10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44. doi:10.1007/s004450000120

    Article  Google Scholar 

  • Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volc Geotherm Res 185(1):69–95

    Article  Google Scholar 

  • Hauber E, BroŻ P, Jagert F, Jodłowski P, Platz T (2011) Very recent and wide-spread basaltic volcanism on Mars. Geophys Res Lett 38(10)

  • Hiesinger H, Head JW, Neukum G (2007) Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from high resolution stereo camera (HRSC) images and mars orbiter laser altimeter (MOLA) data. J Geophys Res (Planets) 112(e11):5011. doi:10.1029/2006JE002717

    Article  Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39:361–383. doi:10.1111/j.1365-246X.1974.tb05460.x

    Article  Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA, Milazzo MP, McEwen AS, Titus TN, Rosiek MR, Galuszka DM, Howington-Kraus E, Kirk RL, Team HiRISE (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243. doi:10.1016/j.icarus.2009.09.011

    Article  Google Scholar 

  • James MR, Pinkerton H, Robson S (2007) Image-based measurement of flux variation in distal regions of active lava flows. Geochem Geophys Geosys 8:Q03006. doi:10.1029/2006GC001448

    Article  Google Scholar 

  • Jeffreys H (1925) Lxxxiv. the flow of water in an inclined channel of rectangular section. Lond Edinb Dublin Philos Mag J Sci 49(293):793–807

    Article  Google Scholar 

  • Johnson A (1970) Physical processes in geology. W.H. Freeman, New York

    Google Scholar 

  • Johnson A, Rodine J (1984) Debris flow. In: Brunsden D, Prior D (eds) Slope instability. Wiley, New York, pp 257–361

    Google Scholar 

  • Kauahikaua J (2007) Lava flow hazard assessment, as of August 2007, for Kīlauea East Rift Zone Eruptions, Hawai‘i Island US Geol Surv. Open File Rep 1264 (9)

  • Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H., Houghton B F, McNutt S R, Rymer H, Stix J., McBirney A R (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 291–305

    Google Scholar 

  • Lipman PW, Banks NG (1987) AA flow dynamics, Mauna Loa 1984. In: Decker R W, Wright T L, Stauffer P H (eds) Volcanism in Hawaii. US Geol Surv Prof Pap, vol 1350, pp 1527– 1567

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) IMorphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32:L04305. doi:10.1029/2004GL021815

    Article  Google Scholar 

  • Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In: Decker R W, Wright T L, Stauffer P H (eds) Volcanism in Hawaii. US Geol Surv Prof Pap, vol 1350, pp 1569–1588

  • Nichols RL (1939) Viscosity of lava. J of Geol 290–302

  • Patrick MR, Dehn J, Dean K (2004) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis. J Geophys Res 109(b18):3202. doi:10.1029/2003JB002537

    Article  Google Scholar 

  • Pinkerton H (1978) Field measurements of the rheology of lava. Nature 276:383–385. doi:10.1038/276383a0

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 sub-terminal lavas, mount etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1(2):167–182

    Article  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120. doi:10.1007/BF00304106

    Article  Google Scholar 

  • Robertson J, Kerr R (2012a) Isothermal dynamics of channeled viscoplastic lava flows and new methods for estimating lava rheology. J Geophys Res 117(B1):B01202

    Google Scholar 

  • Robertson J, Kerr R (2012b) Solidification dynamics in channeled viscoplastic lava flows. J Geophys Res 117(B7):B07206. doi:10.1029/2012JB00916

    Google Scholar 

  • Sakimoto SEH, Gregg TKP (2001) Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows. J Geophys Res 106:8629–8644. doi:10.1029/2000JB900384

    Article  Google Scholar 

  • Shaw HR (1969) Rheology of basalt in the melting range. J Petrol 10:510–535

    Article  Google Scholar 

  • Sonder I, Zimanowski B, Büttner R (2006) Non-Newtonian viscosity of basaltic magma. Geophys Res Lett 33:L02303. doi:10.1029/2005GL024240

    Article  Google Scholar 

  • Spera FJ, Borgia A, Strimple J, Feigenson M (1988) Rheology melts and magmatic suspensions. I - design and calibration of concentric cylinder viscometer with application to rhyolitic magma. J Geophys Res 93:10273–10294. doi:10.1029/JB093iB09p10273

    Article  Google Scholar 

  • Takagi D, Huppert HE (2007) The effect of confining boundaries on viscous gravity currents. J Fluid Mech 577(1):495–505

    Article  Google Scholar 

  • Tallarico A, Dragoni M (1999) Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows. Bull Volcanol 61:40–47. doi:10.1007/s004450050261

    Article  Google Scholar 

  • Walker GPL (1968) Thickness and viscosity of Etnean lavas. Nature 213:484–485. doi:10.1038/213484a0

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond 274:107–118

    Article  Google Scholar 

  • Zimbelman JR (1998) Emplacement of long lava flows on planetary surfaces. J Geophys Res 103:27503–27516. doi:10.1029/98JB01123

    Article  Google Scholar 

Download references

Acknowledgments

EL was supported during this work by the NSF grant EAR-1118943. Hannah Dietterich is thanked for processing the Mauna Loa lidar data. We thank the two reviewers of this paper, Jesse Robertson and Oryaelle Chevrel, and editor Matt Patrick, for their thorough and thoughtful reviews, which helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Lev.

Additional information

Editorial responsibility: M. R. Patrick

Electronic supplementary material

Below is the link to the electronic supplementary material.

NumericalAccuracy (PDF 1.69 MB)

ErrorInFiniteWidthFactor_vs_aspectRatio (PDF 45.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lev, E., James, M.R. The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. Bull Volcanol 76, 829 (2014). https://doi.org/10.1007/s00445-014-0829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0829-3

Keywords

Navigation