Skip to main content
Log in

Divergent trophic levels in two cryptic sibling bat species

  • Behavioral ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in 15N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in 15N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. There is current debate whether the European lesser mouse-eared bats should be regarded as a subspecies of the central Asian M. blythii (and hence M. blythii oxygnathus) or as separate species (then M. oxygnathus) (Ruedi and Mayer 2001; Simmons 2005; Dietz et al. 2007; see also Bogdanowicz et al. 2009). Here, we go with the first, more conservative, option. And we note that, in the literature of the past decades, the European lesser mouse-eared bat has typically been called M. blythii.

References

  • Arlettaz R (1996) Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Anim Behav 51:1–11

    Article  Google Scholar 

  • Arlettaz R (1999) Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 68:460–471

    Article  Google Scholar 

  • Arlettaz R, Perrin N (1995) The trophic niches of sympatric sibling M. myotis and M. blythii: do mouse-eared bats select prey? Symp Zool Soc Lond 67:361–376

    Google Scholar 

  • Arlettaz R, Perrin N, Hausser J (1997a) Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 66:897–911

    Article  Google Scholar 

  • Arlettaz R, Ruedi M, Ibanez C, Palmeirim J, Hausser J (1997b) A new perspective on the zoogeography of the sibling mouse-eared bat species Myotis myotis and Myotis blythii: morphological, genetical and ecological evidence. J Zool 242:45–62

    Article  Google Scholar 

  • Arlettaz R, Jones G, Racey PA (2001) Effect of acoustic clutter on prey detection by bats. Nature 414:742–745

    Article  PubMed  CAS  Google Scholar 

  • Bauerova Z (1978) Contribution to the trophic ecology of Myotis myotis. Folia Zool 27:305–316

    Google Scholar 

  • Berthier P, Excoffier L, Ruedi M (2006) Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc R Soc Lond B 273:3101–3109

    Article  CAS  Google Scholar 

  • Bogdanowicz W, Van Den Bussche RA, Gajewska M, Postawa T, Harutyunyan M (2009) Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe and the Caucasus. Acta Chiropterol 11:289–305

    Article  Google Scholar 

  • Carleton SA, Martinez del Rio C (2005) The effect of cold-induced increased metabolic rate on the rate of 13C and 15N incorporation in house sparrows (Passer domesticus). Oecologia 144:226–232

    Article  PubMed  CAS  Google Scholar 

  • del Rio CM, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Dieckmann U, Doebeli M, Metz JAJ, Tautz D (2004) Adaptive speciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dietz C, von Helversen O, Nill D (2007) Handbuch der Fledermäuse Europas und Nordwestafrikas. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, Berlin

    Book  Google Scholar 

  • Güttinger R (1997) Jagdhabitate des Grossen Mausohrs (Myotis myotis) in der modernen Kulturlandschaft. BUWAL Reihe Umwelt: Bundesamt für Umwelt, Wald und Landschaft

  • Güttinger R, Zahn A, Krapp F, Schober W (2001) Myotis myotis—Großes Mausohr. In: Krapp F (ed) Handbuch der Säugetiere Europas, vol 4/I: Fledertiere I. Aula, Wiebelsheim, pp 111–121

    Google Scholar 

  • Herrera LG, Hobson KA, Miron L, Ramirez N, Mendez G, Sanchez-Cordero V (2001) Sources of protein in two species of phytophagous bats in a seasonal dry forest: evidence from stable-isotope analysis. J Mammal 82:352–361

    Article  Google Scholar 

  • Jones PL, Page RA, Hartbauer M, Siemers BM (2011) Behavioral evidence for eavesdropping on prey song in two Palearctic sibling bat species. Behav Ecol Sociobiol 65:333–340. doi:10.1007/s00265-010-1050-9

    Google Scholar 

  • Kolb A (1961) Sinnesleistungen einheimischer Fledermäuse bei der Nahrungssuche und Nahrungsauswahl auf dem Boden und in der Luft. Z Vergl Physiol 44:550–564

    Article  Google Scholar 

  • Lewontin R (2000) The triple helix: gene, organism, and environment. Harvard University Press, Cambridge

    Google Scholar 

  • McGavin GC (2001) Essential entomology. Oxford University Press, Oxford

    Google Scholar 

  • Miron MLL, Herrera MLG, Ramirez PN, Hobson KA (2006) Effect of diet quality on carbon and nitrogen turnover and isotopic discrimination in blood of a New World nectarivorous bat. J Exp Biol 209:541–548

    Article  Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480

    Article  PubMed  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Oelbermann K, Scheu S (2002) Stable isotope enrichment (delta N-15 and delta C-13) in a generalist predator (Pardosa lugubris, Araneae : Lycosidae): effects of prey quality. Oecologia 130:337–344

    Article  Google Scholar 

  • Pereira MJR, Rebelo H, Rainho A, Palmeirim JM (2002) Prey selection by Myotis myotis (Vespertilionidae) in a Mediterranean region. Acta Chiropterol 4:183–193

    Google Scholar 

  • Pyke GH (1982) Local geographic distributions of bumblebees near crested butte, Colorado—competition and community structure. Ecology 63:555–573

    Article  Google Scholar 

  • Rainho A, Augusto AM, Palmeirim JM (2010) Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. J Appl Ecol 47:850–858

    Google Scholar 

  • Rex K, Czaczkes BI, Michener R, Kunz TH, Voigt CC (2010) Specialisation and omnivory in diverse mammalian assemblages. Ecoscience 17:37–46

    Article  Google Scholar 

  • Rickers S, Langel R, Scheu S (2006) Stable isotope analyses document intraguild predation in wolf spiders (Araneae : Lycosidae) and underline beneficial effects of alternative prey and microhabitat structure on intraguild prey survival. Oikos 114:471–478

    Article  Google Scholar 

  • Rodrigues L, Zahn A, Rainho A, Palmeirim JM (2003) Contrasting the roosting behaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia 67:321–335

    Article  Google Scholar 

  • Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol Ecol 12:1527–1540

    Article  PubMed  CAS  Google Scholar 

  • Ruedi M, Mayer F (2001) Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol Phylogenet Evol 21:436–448

    Article  PubMed  CAS  Google Scholar 

  • Russo D, Jones G, Arlettaz R (2007) Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. J Exp Biol 210:166–176

    Article  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D, Grant PR (1984) Determinants of morphological patterns in communities of Darwin finches. Am Nat 123:175–196

    Article  Google Scholar 

  • Schluter D, Price TD, Grant PR (1985) Ecological character displacement in Darwin finches. Science 227:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Semmens BX, Moore JW (2007) MixSIR: a Bayesian stable isotope mixing model, Version 1.0. http://www.mixSIR.org

  • Siemers BM, Güttinger R (2006) Prey conspicuousness can explain apparent prey selectivity. Curr Biol 16:R157–R159

    Article  PubMed  CAS  Google Scholar 

  • Siemers BM, Schnitzler HU (2000) Natterer’s bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav Ecol Sociobiol 47:400–412

    Article  Google Scholar 

  • Siemers BM, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  PubMed  CAS  Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380

    Article  Google Scholar 

  • Siemers BM, Kaipf I, Schnitzler HU (1999) The use of day roosts and foraging grounds by Natterer’s bats (Myotis nattereri Kuhl, 1818) from a colony in southern Germany. Z Säugetierk 64:241–245

    Google Scholar 

  • Simmons NB (2005) Order chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the World: a taxonomic and geographic reference, vol 1. John Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Smith PG, Racey PA (2008) Natterer’s bats prefer foraging in broad-leaved woodlands and river corridors. J Zool 275:314–322

    Article  Google Scholar 

  • Topál G, Ruedi M (2001) Myotis blythii—Kleines Mausohr. In: Krapp F (ed) Handbuch der Säugetiere Europas, vol 4/I: Fledertiere I. Aula, Wiebelsheim, pp 123–207

    Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet delta N-15 enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Voigt CC, Kelm DH (2006a) Host preference of the common vampire bat (Desmodus rotundus; Chiroptera) assessed by stable isotopes. J Mammal 87:1–6

    Article  Google Scholar 

  • Voigt CC, Kelm DH (2006b) Host preferences of bat flies: following the bloody path of stable isotopes in a host-parasite food chain. Can J Zool 84:397–403

    Article  CAS  Google Scholar 

  • Voigt CC, Matt F, Michener R, Kunz TH (2003) Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. J Exp Biol 206:1419–1427

    Article  PubMed  Google Scholar 

  • Voigt CC, Lehmann GUC, Michener RH, Joachimski MM (2006) Nuptial feeding is reflected in tissue nitrogen isotope ratios of female katydids. Funct Ecol 20:656–661

    Article  Google Scholar 

  • Voigt CC, Kelm DH, Bradley B, Ortmann S (2009) Dietary analysis of plant-visiting bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 593–609

    Google Scholar 

  • Voigt CC, Zubaid A, Kunz TH, Kingston T (2011) Sources of assimilated proteins in old- and new-world phytophagous bats. Biotropica 43:108–113. doi:10.1111/j.1744-7429.2010.00632.x

    Google Scholar 

  • Wcislo WT (1989) Behavioral environments and evolutionary change. Annu Rev Ecol Syst 20:137–169

    Article  Google Scholar 

  • Wcislo WT, Tierney SM (2009) Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol Rev 84:19–37

    Article  PubMed  Google Scholar 

  • Webb SC, Hedges REM, Simpson SJ (1998) Diet quality influences the delta C-13 and delta N-15 of locusts and their biochemical components. J Exp Biol 201:2903–2911

    PubMed  CAS  Google Scholar 

  • Whitaker JO, McCracken GF, Siemers BM (2009) Food habits analysis of insectivorous bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 567–592

    Google Scholar 

  • Winemiller KO, Pianka ER, Vitt LJ, Joern A (2001) Food web laws or niche theory? six independent empirical tests. Am Nat 158:193–199

    Article  PubMed  CAS  Google Scholar 

  • Worthington-Wilmer J, Barrat E (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 37:1–3

    Google Scholar 

Download references

Acknowledgments

We thank the Rusenski Lom Nature Park and its director Ing. Milko Belberov for cooperation and logistic help. Special thanks go to the park’s former biodiversity expert Dr. Teodora Ivanova as well as to Hristiana Popova-Stomjonkova for enthusiastic support and friendship. We thank Dr. Borislav Guéorguiev, Dr. Dragan Chobanov and Dr. Arne Lehmann for help with insect identification, Renate Heckel and Leonie Baier for sample collection in Seewiesen, and Karin Sörgel and Doris Fichte for sample preparation and stable isotope analyses. Dr. Elizabeth Yohannes and two anonymous referees provided helpful comments on the manuscript. The bats at the Seewiesen MPI were kept under licence of Landratsamt Starnberg (# 301c.4 V-sä). Capture and sampling of bats in Bulgaria was performed under licence of the Bulgarian Ministerstvo na Okolnata Sreda i Vodita (# 57, 18. 04. 2006). This study was funded by the Max Planck Society (BMS) and the Leibniz Institute for Zoo and Wildlife Research (CCV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn M. Siemers.

Additional information

Communicated by Elisabeth Kalko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemers, B.M., Greif, S., Borissov, I. et al. Divergent trophic levels in two cryptic sibling bat species. Oecologia 166, 69–78 (2011). https://doi.org/10.1007/s00442-011-1940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1940-1

Keywords

Navigation