Skip to main content

Advertisement

Log in

Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In previous studies human mesenchymal stromal cells (MSCs) maintained the “stemness” of human hematopoietic progenitor cells (HPCs) through direct cell–cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3D-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3D-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT2-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altmann B, Lochner A, Swain M, Kohal RJ, Giselbrecht S, Gottwald E, Steinberg T, Tomakidi P (2014) Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials 35:3208–3219

    Article  CAS  PubMed  Google Scholar 

  • Bauer N, Wilsch-Brauninger M, Karbanova J, Fonseca AV, Strauss D, Freund D, Thiele C, Huttner WB, Bornhauser M, Corbeil D (2011) Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles--a role of the endocytic-exocytic pathway. EMBO Mol Med 3:398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabannon C, Wood P, Torok-Storb B (1992) Expression of CD7 on normal human myeloid progenitors. J Immunol 149:2110–2113

    CAS  PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Shen M, Yang Y-G, Dombkowksi D, Sykes M, Scadden DT (2000) Hematopoietic Stem Cell Quiescence Maintained by p21cip1/waf1. Science 287:1804–1808

    Article  CAS  PubMed  Google Scholar 

  • Christophis C, Taubert I, Meseck GR, Schubert M, Grunze M, Ho AD, Rosenhah A (2011) Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan. Biophys J 101:585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang LT, Feric NT, Laschinger C, Chang WY, Zhang B, Wood GA, Stanford WL, Radisic M (2014) Inhibition of apoptosis in human induced pluripotent stem cells during expansion in a defined culture using angiopoietin-1 derived peptide QHREDGS. Biomaterials 35:7786–7799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Peppo GM, Vunjak-Novakovic G, Marolt D (2014) Cultivation of human bone-like tissue from pluripotent stem cell-derived osteogenic progenitors in perfusion bioreactors. Methods Mol Biol 1202:173–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Dexter TM, Laijtha LG (1975) Proliferation of hemopoietic stem cells and development of potentially leukemic cells in vitro. Bibl Haematol 1975 Oct (43):1–5

  • Dexter TM, Allen TD, Lajtha LG (1976) Conditions controlling the proliferation of haematopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Ther Pos Statement Cytotherapy 8:315–317

    CAS  Google Scholar 

  • Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giselbrecht S, Gietzelt T, Gottwald E, Guber A, Trautmann C, Truckenmüller R, Weibezahn K-F (2004) Microthermoforming as a novel technique for manufacturing scaffolds in tissue engineering. IEE Proc Nanobiotechnol 151:151–157

    Article  CAS  PubMed  Google Scholar 

  • Giselbrecht S, Gietzelt T, Gottwald E, Trautmann C, Truckenmüller R, Weibezahn K-F, Welle A (2006a) 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomed Microdevices 8:191–199

    Article  CAS  PubMed  Google Scholar 

  • Giselbrecht S, Gietzelt T, Gottwald E, Trautmann C, Truckenmüller R, Weibezahn K-F, Welle A (2006b) 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomed Microdev 8:191–199

    Article  CAS  Google Scholar 

  • Giselbrecht S, Gottwald, E., Truckenmüller, R., Trautmann, C., Welle, A., Guber, A., Saile, V., Gietzelt, T., Weibezahn, K.-F. (2008) Microfabrication of chip-sized scaffolds for the three-dimensional cell cultivation J Vis Exp 15:e699

  • Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Truckenmüller R, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Wobus AM, Weibezahn K-F (2007a) A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 7:777–785

    Article  CAS  PubMed  Google Scholar 

  • Gottwald E, Giselbrecht S, Lahni B, Hiebl B, Weibezahn K-F (2007b) Cell Chip-basierte Bioreaktoren für die extrakorporale Organunterstützung. Galvanotechnik 4:974–978

    Google Scholar 

  • Gottwald E. LB, Thiele D., Giselbrecht S., Welle A., Weibezahn K.F. (2008) Chip-based three-dimensional cell culture in perfused micro-bioreactors. J Vis Exp 15:e564

  • Hamblin TJ (2003) CD38: what is it good for? Blood 102:1939–1940

    Article  CAS  Google Scholar 

  • Handgretinger R, Kuci S (2013) CD133-Positive Hematopoietic Stem Cells: From Biology to Medicine. Adv Exp Med Biol 777:99–111

    Article  CAS  PubMed  Google Scholar 

  • Hanke M, Hoffmann I, Christophis C, Schubert M, Hoang VT, Zepeda-Moreno A, Baran N, Eckstein V, Wuchter P, Rosenhahn A, Ho AD (2014) Differences between healthy hematopoietic progenitors and leukemia cells with respect to CD44 mediated rolling versus adherence behavior on hyaluronic acid coated surfaces. Biomaterials 35:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Hunt P, Robertson D, Weiss D, Rennick D, Lee F, Witte ON (1987) A single bone marrow-derived stromal cell type supports the in vitro growth of early lymphoid and myeloid cells. Cell 48:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R (2009) Hematopoietic stem cells in co-culture with mesenchymal stromal cells--modeling the niche compartments in vitro. Haematologica 95:542–550

    Article  Google Scholar 

  • Jing DH, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R (2010) Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematol-Hematol J 95:542–550

    Article  CAS  Google Scholar 

  • Kodama H, Hagiwara H, Sudo H, Amagai Y, Yokota T, Arai N, Kitamura Y (1986) MC3T3-G2/PA6 preadipocytes support in vitro proliferation of hemopoietic stem cells through a mechanism different from that of interleukin 3. J Cell Physiol 129:20–26

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Levesque JP, Helwani FM, Winkler IG (2010) The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24:1979–1992

    Article  PubMed  Google Scholar 

  • Liu M, Liu N, Zang R, Li Y, Yang ST (2013) Engineering stem cell niches in bioreactors. World J Stem Cell 5:124–135

    Article  Google Scholar 

  • Ludwig A, Saffrich R, Eckstein V, Bruckner T, Wagner W, Ho AD, Wuchter P (2014) Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy 16:111–121

    Article  CAS  PubMed  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moepps B, Frodl R, Rodewald HR, Baggiolini M, Gierschik P (1997) Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived factor 1alpha activation of Gi2 are differentially expressed in vivo. Eur J Immunol 27:2102–2112

    Article  CAS  PubMed  Google Scholar 

  • Mohty M, Hubel K, Kroger N, Aljurf M, Apperley J, Basak GW, Bazarbachi A, Douglas K, Gabriel I, Garderet L, Geraldes C, Jaksic O, Kattan MW, Koristek Z, Lanza F, Lemoli RM, Mendeleeva L, Mikala G, Mikhailova N, Nagler A, Schouten HC, Selleslag D, Suciu S, Sureda A, Worel N, Wuchter P, Chabannon C, Duarte RF (2014) Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 49:865–872

    Article  CAS  PubMed  Google Scholar 

  • O'Neill JD, Freytes DO, Anandappa AJ, Oliver JA, Vunjak-Novakovic GV (2013) The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials 34:9830–9841

    Article  PubMed  Google Scholar 

  • Rieke M, Gottwald E, Weibezahn K-F, Layer PG (2008) Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. Lab Chip 8:1570–1579

    Article  Google Scholar 

  • Schajnovitz A, Itkin T, D'Uva G, Kalinkovich A, Golan K, Ludin A, Cohen D, Shulman Z, Avigdor A, Nagler A, Kollet O, Seger R, Lapidot T (2011) CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol 12:391–398

    Article  CAS  PubMed  Google Scholar 

  • Sharma MB, Limaye LS, Kale VP (2012) Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica 97:651–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 18:1360–1377

    CAS  PubMed  Google Scholar 

  • Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G (2015) Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truckenmüller R, Giselbrecht S, van Bitterswijk C, Dambrowsky N, Gottwald E, Mappes T, Rolletschek A, Saile V, Trautmann C, Weibezahn K-F (2008) Flexible fluidic microchips based on thermoformed and locally modified thin polymer films. Lab Chip 8:1570–1579

    Article  PubMed  Google Scholar 

  • Truckenmuller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, van den Berg A, Wessling M, van Blitterswijk C (2011) Thermoforming of film-based biomedical microdevices. Adv Mater 23:1311–1329

    Article  PubMed  Google Scholar 

  • Tsai S, Emerson SG, Sieff CA, Nathan DG (1986) Isolation of a human stromal cell strain secreting hemopoietic growth factors. J Cell Physiol 127:137–145

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Saffrich R, Wirkner U, Eckstein V, Blake J, Ansorge A, Schwager C, Wein F, Miesala K, Ansorge W, Ho AD (2005a) Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 23:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005b) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R, Eckstein V, Ho AD (2007a) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 25:2638–2647

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Wein F, Roderburg C, Saffrich R, Faber A, Krause U, Schubert M, Benes V, Eckstein V, Maul H, Ho AD (2007b) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35:314–325

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Wein F, Roderburg C, Saffrich R, Faber A, Krause U, Schubert M, Benes V, Eckstein V, Maul H, Ho AD (2007c) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35:314–325

    Article  CAS  PubMed  Google Scholar 

  • Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W (2010) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 14:337–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wein F, Pietsch L, Saffrich R, Wuchter P, Walenda T, Bork S, Horn P, Diehlmann A, Eckstein V, Ho AD, Wagner W (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4:129–139

    Article  CAS  PubMed  Google Scholar 

  • Whitlock CA, Tidmarsh GF, Muller-Sieburg C, Weissman IL (1987) Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell 48:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328:499–514

    Article  PubMed  Google Scholar 

  • Wuchter P, Leinweber C, Saffrich R, Hanke M, Eckstein V, Ho AD, Grunze M, Rosenhahn A (2014) Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell Tissue Res 355:315–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Angela Lenze and Anke Diehlmann for isolation and preparation of HPCs and MSCs, as well as David Thiele and Anke Dech for technical assistance. We also thank Siegfried Horn, Jörg Bohn and Hartmut Gutzeit for the construction and manufacturing of the bioreactors and periphery. This work was supported by the German Ministry of Education and Research (BMBF) within the supporting program “Cell Based Regenerative Medicine” (START-MSC2; funding code 01GN0940 to ADH and PW) and within the collaborative research project “Systems Biology of Erythropoietin” (SBEpo; funding code 0316182D to ADH and PW). This work was also supported by the HEiKA Research Alliance (funding to EG and PW) and the German Research Foundation DFG (SFB 873, funding to ADH and PW). The authors also thank the Karlsruhe Nano and Micro Facility (KNMF) for the support of the project.

We acknowledge the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf ) of KIT for access to instruments at their laboratories and we would like to thank Dr. Matthias Worgull and his team for the manufacturing of the KITChips.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Wuchter or Eric Gottwald.

Ethics declarations

Disclosures

The first author and all co-authors confirm that there are no relevant conflicts of interest to disclose, except for the following:

Patrick Wuchter: Honoraria and Membership on Advisory Boards of Sanofi-Aventis. Travel grants from Hexal AG.

Anthony D. Ho: Research funding from and Membership on Advisory Board of Genzyme/Sanofi-Aventis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuchter, P., Saffrich, R., Giselbrecht, S. et al. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 364, 573–584 (2016). https://doi.org/10.1007/s00441-015-2348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2348-8

Keywords

Navigation