Skip to main content
Log in

Optical anisotropy reveals molecular order in a mouse enthesis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Entheses are specialized biological structures that functionally anchor tendons to bones. The complexity, mechanical characteristics and properties of the entheses, particularly those related to exercise, mechanical load and pathologies, have been extensively analyzed; however, the macromolecular organization of the enthesis fibers, as assessed by polarization microscopy, has not yet been investigated. Morphological and optical anisotropy characteristics, such as birefringence, linear dichroism (LD) and differential interference contrast (DIC-PLM) properties, are thus analyzed in this study of a healthy adult mouse calcaneal tendon–bone enthesis. The molecular and supramolecular order of collagen and GAGs was determined for the collagen bundles of this enthesis. Based on a birefringence plot pattern as well as on metachromasy and linear dichroism after toluidine blue staining at pH 4.0, a similarity between the calcaneal tendon–bone enthesis and cartilage during ossification may be assumed. This similarity is assumed to favor the adequacy of this enthesis to support a compressive load. Considering that the collagen–proteoglycan complexes and the enthesis fibers themselves have a chiral nature, these structures could be acting via reciprocal signaling with the cellular environment of the enthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aro AA, Vidal BD, Pimentel ER (2012) Biochemical and anisotropical properties of tendons. Micron 43:205–214

    Article  Google Scholar 

  • Bêche B, Gaviot E (2003) Matrix formalism to enhance the concept of effective dielectric constant. Opt Commun 219:15–19

    Article  Google Scholar 

  • Benjamin M, McGonagle (2009) Entheses: tendon and ligament attachment sites. Scand J Med Sci Sports 19:520–527

    Article  CAS  PubMed  Google Scholar 

  • Benjamin M, Toumi H, Ralphs JR, Budder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208:471–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett HS (1967) The microscopical investigation of biological materials with polarized light. In: Jones RM (ed) McClung’s handbook of microscopical technique. Hafner, New York, pp 591–766

    Google Scholar 

  • Damasceno NB, Ghiraldini FG, Mello MLS (2013) Effects of type-1 diabetes mellitus on cell death, mitotic index and DNA methylation in HepG2 cells and mouse hepatocytes. 59th Congr Brasil Genét, Águas de Lindoia 2013. Available: http://www.sbg.org.br (ISBN 978-85-89109-06-2), pp. 57

  • Feitosa VLC, Vidal BC, Pimentel ER (2002) Optical anisotropy of a pig tendon under compression. J Anat 200:105–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Foster A, Buckley H, Tayles N (2014) Using enthesis robusticity to infer activity in the past: a review. J Archaeol Method Theory 21:511–533

    Article  Google Scholar 

  • Gillard GC, Reilly HC, Bell-booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46

    Article  CAS  PubMed  Google Scholar 

  • Mathews M (1965) The interaction of collagen and acid mucopolysaccharides. A model for connective tissue. Biochem J 96:710–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mello MLS, Vidal BC (1973) Anisotropic properties of toluidine blue-stained collagen. Ann Histochem 18:103–122

    CAS  Google Scholar 

  • Mello MLS, Godo C, Vidal BC, Abujadi JM (1975) Changes in macromolecular orientation on collagen fibers during the process of tendon repair in the rat. Ann Histochim 20:145–152

    PubMed  Google Scholar 

  • Mello MLS, Vidal BC, de Carvalho AC, Caseiro-Filho AC (1979) Changes with age of anisotropic properties of collagen bundles. Gerontology 25:2–8

    Article  CAS  PubMed  Google Scholar 

  • Pena A-M, Boulesteix T, Dartigalongue T, Schanneklein M-C (2005) Chiroptical effects in the second harmonic signal of collagens I and IV. J Am Chem Soc 127:10314–10322

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JF, dos Anjos EHM, Mello MLS, Vidal BC (2013) Skin collagen fibers molecular order: a pattern of distributional fiber orientation as assessed by optical anisotropy and image analysis. PLoS ONE 8(1):e54724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rieppo L, Saarakkala S, Närhi T, Helminen HJ, Jurvelin JS, Rieppo J (2012) Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarth Cart 20:451–459

    Article  CAS  Google Scholar 

  • Rieppo L, Närhi T, Helminen HJ, Jurvelin JS, Saarakkala S, Rieppo J (2013) Infrared spectroscopic analysis of human and bovine articular cartilage proteoglycans using carbohydrate peak or its second derivative. J Biomed Opt 18:097006

    Article  PubMed  Google Scholar 

  • Rodger A, Norden B (1997) Circular dichroism and linear dichroism. Oxford University Press, Oxford, pp 33–44

    Google Scholar 

  • Roth S, Freund I (1981) Optical second-harmonic scattering in rat-tail tendon. Biopolymers 20:1271–1290

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Freund I (1982) Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon. J Appl Crystallogr 15:72–78

    Article  CAS  Google Scholar 

  • Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S (2013) Muscle loading is necessary for the formation of a functional tendon enthesis. Bone 55:44–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinohara Y, Kumai T, Higashiyama I, Hayashi K, Matsuda T, Tanaka Y, Takakura T (2014) Histological and molecular characterization of the femoral attachment of the human ligamentum capitis femoris. Scand J Med Sci Sports 24:e245–e253

    Article  CAS  PubMed  Google Scholar 

  • Silva DFT, Gomes ASL, Vidal BC, Ribeiro MS (2013) Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation. Ann Biomed Eng 41:752–762

    Article  PubMed  Google Scholar 

  • Tatara AM, Lipner JH, Das R, Kim HM, Patel N, Ntouvali E, Silva MJ, Thomopoulos S (2014) The role of muscle loading on bone (re)modeling at the developing enthesis. PLoS ONE 9(5):e97375

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomopoulos S, Marques JP, Weinberger B, Birman V, Genin GM (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39:1842–1851

    Article  PubMed  Google Scholar 

  • Tomiosso TC, Nakagaki WR, Gomes L, Hyslop S, Pimentel ER (2009) Organization of collagen bundles during tendon healing in rats treated with L-NAME. Cell Tissue Res 337:235–242

    Article  CAS  PubMed  Google Scholar 

  • Vidal BC (1963) Pleochroism in tendon and its bearing to acid mucopolysaccharides. Protoplasma 56:529–536

    Article  Google Scholar 

  • Vidal BC (1965) The part played by mucopolysaccharides in the form birefringence of collagen. Protoplasma 59:472–479

    Article  CAS  Google Scholar 

  • Vidal BC (1972a) Anormal dispersion of birefringence, linear dichroism, and relationships with ORD (extrinsic Cotton effect). Histochemie 30:102–107

    Article  CAS  Google Scholar 

  • Vidal BC (1972b) Toluidine blue: Cotton effect-like phenomena produced by crystal aggregates obtained by drying on microscopic slides. Ann Histochim 17:151–157

    Google Scholar 

  • Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification: microspectrophotometric evaluation and macromolecular order. Cell Mol Biol 22:45–64

    CAS  Google Scholar 

  • Vidal BC (1980) The part played by proteoglycans and glycoproteins in the macromolecular orientation of collagen bundles. Cell Mol Biol 26:415–421

    CAS  Google Scholar 

  • Vidal BC (1986) Evaluation of carbohydrate role in the molecular order of collagen bundles: microphotometric measurements of textural birefringence. Cell Mol Biol 32:527–535

    CAS  Google Scholar 

  • Vidal BC (2003) Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron 34:423–432

    Article  CAS  Google Scholar 

  • Vidal BC (2010) Form birefringence as applied to biopolymers and inorganic material supraorganization. Biotech Histochem 85:365–378

    Article  CAS  PubMed  Google Scholar 

  • Vidal BC (2013) Using the FT-IR linear dichroism method for molecular order determination of tendon collagen bundles and nylon 6. Acta Histochem 115:686–691

    Article  CAS  Google Scholar 

  • Vidal BC, Mello MLS (1970) Absorption spectral curves of dichroism on collagen bundles. Histochemie 23:176–179

    Article  Google Scholar 

  • Vidal BC, Mello MLS (1984) Proteoglycan arrangement in tendon collagen bundles. Cell Mol Biol 30:195–204

    CAS  PubMed  Google Scholar 

  • Vidal BC, Mello MLS (2010) Optical anisotropy of collagen fibers of rat calcaneal tendons: an approach to spatially resolved supramolecular organization. Acta Histochem 112:53–61

    Article  Google Scholar 

  • Vidal BC, Vilarta R (1988) Articular cartilage: Collagen II-proteoglycan interactions. Availability of reactive groups. Variation in birefringences and differences as compared to collagen I. Acta Histochem 83:189–205

    Article  CAS  Google Scholar 

  • Vilarta R, Vidal BC (1989) Anisotropic and biomechanical properties of tendon modified by exercise and denervation: Aggregation and molecular order in collagen bundles. Matrix 9:55–61

    Article  CAS  PubMed  Google Scholar 

  • Zelzer E, Blitz E, Killian ML, Thomopoulos S (2014) Tendon to-bone attachment: from development to maturity. Birth Defects Res C 102:101–112

    Article  CAS  Google Scholar 

  • Zhao L, Thambyah A, Broom ND (2014) A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J Anat 224:624–633

    Article  PubMed  Google Scholar 

  • Zimmerman E, Geiger B, Addadi L (2002) Initial stage of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys J 82:1848–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the São Paulo State Research Foundation (FAPESP, Brazil) (grants no. 2003/04597-0 and 2013/11078-0). The funders had no role in the study design, the data collection and analysis, the decision to publish or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedicto de Campos Vidal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, B.d.C., dos Anjos, E.H.M. & Mello, M.L.S. Optical anisotropy reveals molecular order in a mouse enthesis. Cell Tissue Res 362, 177–185 (2015). https://doi.org/10.1007/s00441-015-2173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2173-0

Keywords

Navigation