Skip to main content

Advertisement

Log in

Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstracts

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease involving degeneration of motor neurons in the central nervous system. Stem cell treatment is a potential therapy for this fatal disorder. The human amniotic membrane (HAM), an extremely rich and easily accessible tissue, has been proposed as an attractive material in cellular therapy and regenerative medicine because of its advantageous characteristics. In the present study, we evaluate the long-term effects of a cellular treatment by intravenous administration of human amniotic mesenchymal stem cells (hAMSCs) derived from HAM into a hSOD1G93A mouse model. The mice received systemic administration of hAMSCs or phosphate-buffered saline (PBS) at the onset, progression and symptomatic stages of the disease. hAMSCs were detected in the spinal cord at the final stage of the disease, in the form of isolates or clusters and were negative for β-tubulin III and GFAP. Compared with the treatment with PBS, multiple hAMSC transplantations significantly retarded disease progression, extended survival, improved motor function, prevented motor neuron loss and decreased neuroinflammation in mice. These findings demonstrate that hAMSC transplantation is a promising cellular treatment for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103:16021–16026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17:955–968

    Article  PubMed  Google Scholar 

  • Boillée S, Vande Velde C, Cleveland DW (2006a) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  PubMed  Google Scholar 

  • Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006b) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    Article  PubMed  Google Scholar 

  • Boulis NM, Federici T, Glass JD, Lunn JS, Sakowski SA, Feldman EL (2011) Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 138:172–176

    Article  Google Scholar 

  • Bungener C, Piquard A, Pradat PF, Salachas F, Meininger V, Lacomblez L (2005) Psychopathology in amyotrophic lateral sclerosis: a preliminary study with 27 ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 6:221–225

    Article  PubMed  Google Scholar 

  • Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24:2466–2477

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsu LF, Hsu LW, Tsai MS (2010) Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells Tissues Organs 192:93–105

    Article  PubMed  Google Scholar 

  • Choi C-I, Lee YD, Kim H, Kim SH, Suh-Kim H, Kim SS (2013) Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant 22:855–870

    Article  Google Scholar 

  • Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo R, Comi GP (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532

    Article  PubMed  Google Scholar 

  • Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Simone C, Falcone M, Riboldi G, Govoni A, Bresolin N, Comi GP (2010) Systemic transplantation of c-kit1 cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 19:3782–3796

    Article  CAS  PubMed  Google Scholar 

  • De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  Google Scholar 

  • Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2011) Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 81:162–171

    Article  PubMed  Google Scholar 

  • Dion PA, Daoud H, Rouleau GA (2009) Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 10:769–782

    Article  CAS  PubMed  Google Scholar 

  • Elliott JL (2001) Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res Mol Brain Res 95:172–178

    Article  CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12:255–270

    Article  CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Rodrigues MC, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR (2012) Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS ONE 7:e31254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen WJ, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Oostveen JA, Gurney ME (1998) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23:249–256

    Article  CAS  PubMed  Google Scholar 

  • Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  CAS  PubMed  Google Scholar 

  • Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    Article  CAS  PubMed  Google Scholar 

  • In ’t Anker PS, Scherjon SA, Kleijburg-vanderKeur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Article  PubMed  Google Scholar 

  • Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, Moraleda JM (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25:91–98

    CAS  PubMed  Google Scholar 

  • Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, Park YH (2012) Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci 13:23–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Kim HS, Park JM, Kim HW, Park MK, Lee HS, Lim DS, Lee TH, Chopp M, Moon J (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34:2408–2420

    Article  CAS  PubMed  Google Scholar 

  • Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, Maragakis NJ (2008) focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11:1294–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10:S42–S50

    Article  PubMed  Google Scholar 

  • Lunn JS, Hefferan MP, Marsala M, Feldman EL (2009) Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 27:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL (2011) Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 6:201–213

    Article  PubMed Central  PubMed  Google Scholar 

  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni GD, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265:78–83

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470

    Article  CAS  PubMed  Google Scholar 

  • Mead RJ, Bennett EJ, Kennerley AJ, Sharp P, Sunyach C, Kasher P, Berwick J, Pettmann B, Battaglia G, Azzouz M, Grierson A, Shaw PJ (2011) Optimised and rapid pre-clinical screening in the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS ONE 6:e23244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311

    Article  PubMed  Google Scholar 

  • Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263

    Article  CAS  PubMed  Google Scholar 

  • Portmann-Lanz CB, Schoeberlein A, Portmann R, Mohr S, Rollini P, Sager R, Surbek DV (2010) Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am J Obstet Gynecol 202:294.e1–e11

    Article  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston S, Tanzi R, Halperin JJ, Herzfeldt B, Van den Berg R, Hung WY, Bird T, Deng G, Mulder DW, Smith C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella J, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Silani V, Calzarossa C, Cova L, Ticozzi N (2010) Stem cells in amyotrophic lateral sclerosis: motor neuron protection or replacement? CNS Neurol Disord Drug Targets 9:314–324

    Article  CAS  PubMed  Google Scholar 

  • Thonhoff JR, Ojeda L, Wu P (2009) Stem cell-derived motor neurons: applications and challenges in amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 4:178–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405

    Article  CAS  PubMed  Google Scholar 

  • Weydt P, Hong SY, Kliot M, Möller T (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport 14:1051–10544

    PubMed  Google Scholar 

  • Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhou C, Teng JJ, Zhao RL, Song YQ, Zhang C (2009) Multiple administrations of human marrow stromal cells through cerebrospinal fluid prolong survival in a transgenic mouse model of amyotrophic lateral sclerosis. Cytotherapy 11:299–306

    Article  CAS  PubMed  Google Scholar 

  • Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW (2007) Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9:414–426

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8:888–899

    Article  PubMed  Google Scholar 

  • Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, Zlokovic BV (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Natural Science Foundation of China (81171179, 81272439), Key Sci-Tech Research Projects of Guangdong Province (2008A030201019, S2013020012754), The Laboratory Rolling Projects of Guangdong Provincial Department of Education (2013CXZDA008) to X.D. Jiang; the Talent Program of Yunnan Province, China and The Professorial Fellowship of Monash University to Z.C. Xiao; Scientific and Technological International project of Yunnan province (2013IA013) to Z.L. Hou. We thank the following for their significant contributions: Wen Li for cell transplantation, Yong Yang for CatWalk gaint analysis.

Conflicts of Interest

The authors declare no financial or other competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodan Jiang or Zhicheng Xiao.

Additional information

Haitao Sun and Zongliu Hou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Hou, Z., Yang, H. et al. Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model. Cell Tissue Res 357, 571–582 (2014). https://doi.org/10.1007/s00441-014-1903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1903-z

Keywords

Navigation