Skip to main content
Log in

MicroRNA-dependent genetic networks during neural development

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of microRNAs enriched in the brain and discuss the way that genetic networks in neural development depend on microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrés ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neuralspecific gene expression. Proc Natl Acad Sci U S A 96:9873–9878

    Article  PubMed Central  PubMed  Google Scholar 

  • Asli NS, Kessel M (2010) Spatiotemporally restricted regulation of generic motor neuron programs by miR-196-mediated repression of Hoxb8. Dev Biol 344:857–868

    Article  CAS  PubMed  Google Scholar 

  • Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Sci Signal 336:233–237

    CAS  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  • Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitorsalong the anterior-posterior axis. Dev Cell 20:19–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudreau RL, Jiang P, Gilmore BL, Spengler RM, Tirabassi R, Nelson JA, Ross CA, Xing Y, Davidson BL (2014) Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 81:294–305

    Article  CAS  PubMed  Google Scholar 

  • Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M, Black DL (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21:1636–1652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S (2012) A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489:447–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Yeo G, Muotri AR, Kuwabara T (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  CAS  PubMed  Google Scholar 

  • Chen J-A, Huang Y-P, Mazzoni EO, Tan GC, Zavadil J, Wichterle H (2011) Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69:721–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chi SW, Hannon GJ, Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19:321–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957

    Article  CAS  PubMed  Google Scholar 

  • Cochella L, Hobert O (2012) Diverse functions of microRNAs in nervous system development. Curr Top Dev Biol 99:115-143

    Article  CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220

    Article  PubMed Central  PubMed  Google Scholar 

  • De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    Article  PubMed Central  PubMed  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Sci Signal 336:237–240

    CAS  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A-C, Munschauer M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73:35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hobert O, Carrera I, Stefanakis N (2010) The molecular and gene regulatory signature of a neuron. Trends Neurosci 33:435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, Menzel C, Liang H, Yang H, Zhao M et al (2011) MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet 7:e1002327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffries CD, Fried HM, Perkins DO (2011) Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17:675–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238:2800–2812

    Article  PubMed Central  PubMed  Google Scholar 

  • Khudayberdiev SA, Zampa F, Rajman M, Schratt G (2013) A comprehensive characterization of the nuclear microRNA repertoire of post-mitotic neurons. Front Mol Neurosci 6:1–19

    Article  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3-′UTR interaction sites. Genome Res 19:1175–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Lee J-A, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8:819–831

    Article  CAS  PubMed  Google Scholar 

  • Liu C-G, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M et al (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukiw WJ (2012) Evolution and complexity of micro RNA in the human brain. Front Genet 3:166

    Article  PubMed Central  PubMed  Google Scholar 

  • Lunyak VV (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298:1747–1752

    Article  CAS  PubMed  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′UTR as in the 3′UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris SA, Daley GQ (2013) A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 23:33–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mrnas and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pasquinelli AE (2012) Non-coding RNA: microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei J-J (2008) Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res 6:663–673

    Article  CAS  PubMed  Google Scholar 

  • Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29:2161–2164

    Article  CAS  PubMed  Google Scholar 

  • Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C, Yu RT, Gage FH, Evans RM, Shi Y (2010) Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12:31–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14:347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, Buckley NJ (2000) Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-Histone deacetylase complex. Mol Cell Biol 20:2147–2157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10:987–993

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136:913–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed Central  PubMed  Google Scholar 

  • Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422

    Article  CAS  PubMed  Google Scholar 

  • Staahl BT, Tang J, Wu W, Sun A, Gitler AD, Yoo AS, Crabtree GR (2013) Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci 33:10348–10361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Ruth TY, Evans RM, Shi Y (2007) Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 104:15282–15287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun G, Ye P, Murai K, Lang M-F, Li S, Zhang H, Li W, Fu C, Yin J, Wang A et al (2011) miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2:529

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun AX, Crabtree GR, Yoo AS (2013) MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 25:215-221

    Article  CAS  PubMed  Google Scholar 

  • Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  PubMed  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volvert M-L, Rogister F, Moonen G, Malgrange B, Nguyen L (2012) MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19:1573–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y et al (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152:82–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo M (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307:596–600

    Article  CAS  PubMed  Google Scholar 

  • Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Lang M-F, Yang S, Li W, Shi Y (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A 107:1876–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abernathy, D.G., Yoo, A.S. MicroRNA-dependent genetic networks during neural development. Cell Tissue Res 359, 179–185 (2015). https://doi.org/10.1007/s00441-014-1899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1899-4

Keywords

Navigation