Skip to main content
Log in

Association between telomere length and chromosome 21 nondisjunction in the oocyte

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Chromosome 21 nondisjunction in oocytes is the most common cause of trisomy 21, the primary chromosomal abnormality responsible for Down syndrome (DS). This specific type of error is estimated to account for over 90 % of live births with DS, with maternal age being the best known risk factor for chromosome 21 nondisjunction. The loss of telomere length and the concomitant shortening of chromosomes are considered a biological marker for aging. Thus, we tested the hypothesis that mothers who had a maternal nondisjunction error leading to a live birth with DS (n = 404) have shorter telomeres than mothers with live births without DS (n = 42). In effect, our hypothesis suggests that mothers of children with DS will appear “biologically older” as compared to the mothers of euploid children. We applied a quantitative PCR assay to measure the genome-wide relative telomere length to test this hypothesis. The results of our study support the hypothesis that young mothers of DS babies are “biologically older” than mothers of euploid babies in the same age group and supports telomere length as a biomarker of age and hence risk for chromosome nondisjunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen EG, Freeman SB, Druschel C, Hobbs CA, O’Leary LA, Romitti PA, Royle MH, Torfs CP, Sherman SL (2009) Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunction: a report from the Atlanta and National Down Syndrome Projects. Hum Genet 125(1):41–52

    Article  PubMed  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and Aging. Physiol Rev 88(2):557–579. doi:10.1152/physrev.00026.2007

    Article  CAS  PubMed  Google Scholar 

  • Aviv A (2008) The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci 63:979–983

    Article  PubMed  Google Scholar 

  • Boulay JL, Reuter J, Ritschard R, Terracciano L, Herrmann R, Rochlitz C (1999) Gene dosage by quantitative real-time PCR. Biotechniques 27(2):228–230

    CAS  PubMed  Google Scholar 

  • Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, Simhan HN, Wadhwa PD (2013) Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol 208(2):134.e1–134.e7. doi:10.1016/j.ajog.2012.11.033

    Article  Google Scholar 

  • Epel ES (2009) Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens) 8(1):7–22 (Review)

    Article  Google Scholar 

  • Freeman SB, Allen EG, Oxford-Wright CL, Tinker SW, Druschel C, Hobbs CA, O’Leary LA, Romitti PA, Royle MH, Torfs CP, Sherman SL (2007) The National Down Syndrome Project: design and implementation. Public Health Rep 122(1):62–72

    PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Feingold E, Chakraborty S, Dey SK (2010) Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on down syndrome birth. Hum Genet 127(4):403–409

    Article  PubMed  Google Scholar 

  • Gómez D, Solsona E, Guitart M, Baena N, Gabau E, Egozcue J, Caballín MR (2000) Origin of trisomy 21 in Down syndrome cases from a Spanish population registry. Ann Genet 43(1):23–28

    Article  PubMed  Google Scholar 

  • Hoffmann J, Erben Y, Zeiher AM, Dimmeler S, Spyridopoulos I (2009) Telomere length-heterogeneity among myeloid cells is a predictor for chronological ageing. Exp Gerontol 44:363–366

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Nakamura K, Kishimoto H, Honma N, Aida J, Sawabe M, Arai T, Fujiwara M, Takeuchi F, Kato M, Oshimura M, Izumiyama N, Takubo K (2006) Telomere shortening with aging in the human pancreas. Exp Gerontol 41:882–886

    Article  CAS  PubMed  Google Scholar 

  • Keefe DL, Liu L, Marquard K (2007) Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci 64:139–143

    Article  CAS  PubMed  Google Scholar 

  • Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y, Shen J, Saker D, May KM, Avramopoulos D, Petersen MB, Hallberg A, Mikkelsen M, Hassold TJ, Sherman SL (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14(4):400–405

    Article  CAS  PubMed  Google Scholar 

  • Lamb NE, Sherman SL, Hassold TJ (2005) Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet Genome Res 111(3–4):250–255

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Keefe DL (2002) Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice. Hum Reprod 17:2678–2685

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Blasco MA, Keefe DL (2002) Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep 3:230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci USA 101:6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez P, Siegl-Cachedenier I, Flores JM, Blasco MA (2009) MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell 8:2–17

    Article  CAS  PubMed  Google Scholar 

  • Morton NE, Jacobs PA, Hassold T, Wu D (1988) Maternal age in trisomy. Ann Hum Genet 52:227–235

    Article  CAS  PubMed  Google Scholar 

  • Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL (2008) New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet 4(3):e1000033

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJ, Chowdhury R, Begum F, Marazita M, Cheung V, Feingold E, Sherman SL (2012) Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet 131(7):1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Penrose LS (1933) The relative effects of paternal and maternal age in Mongolism. J Genet 27:219–224

    Article  Google Scholar 

  • Risch N, Stein Z, Kline J, Warburton D (1986) The relationship between maternal age and chromosome size in autosomal trisomy. Am J Hum Genet 39:68–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H (2004) Female-specific features of recombinatorial double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113:22–23

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H (2006) Factors directing telomere dynamics in synaptic meiosis. Biochem Soc Trans 34:550–553

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H, Weich S, Schwegler H, Heyting C, Harle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134:1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Sherman SL, Allen EG, Bean LH, Freeman SB (2007) Epidemiology of Down syndrome. Ment Retard Dev Disabil Res Rev 13(3):221–227

    Article  PubMed  Google Scholar 

  • Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M, Oshimura M, Nakamura K (2002) Telomere lengths are characteristic in each human individual. Exp Gerontol 37:523–531

    Article  CAS  PubMed  Google Scholar 

  • Warburton D (2005) Biological aging and the etiology of aneuploidy. Cytogenet Genome Res 111:266–272

    Article  CAS  PubMed  Google Scholar 

  • Yoon PW, Freeman SB, Sherman SL, Taft LF, Gu Y, Pettay D, Flanders WD, Khoury MJ, Hassold TJ (1996) Advanced maternal age and the risk of Down syndrome characterized by meiotic stage of chromosomal error: a population-based study. Am J Hum Genet 58:628–633

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the participants who made this study possible, along with those who helped with recruitment and data collection. This work was supported by the National Institutes of Health R01 HD38979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Albizua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albizua, I., Rambo-Martin, B.L., Allen, E.G. et al. Association between telomere length and chromosome 21 nondisjunction in the oocyte. Hum Genet 134, 1263–1270 (2015). https://doi.org/10.1007/s00439-015-1603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1603-0

Keywords

Navigation