Skip to main content
Log in

Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Emergence of advanced network analysis techniques utilizing resting-state functional magnetic resonance imaging (R-fMRI) has enabled a more comprehensive understanding of neurological disorders at a whole-brain level. However, inferring brain connectivity from R-fMRI is a challenging task, particularly when the ultimate goal is to achieve good control–patient classification performance, owing to perplexing noise effects, curse of dimensionality, and inter-subject variability. Incorporating sparsity into connectivity modeling may be a possible solution to partially remedy this problem since most biological networks are intrinsically sparse. Nevertheless, sparsity constraint, when applied at an individual level, will inevitably cause inter-subject variability and hence degrade classification performance. To this end, we formulate the R-fMRI time series of each region of interest (ROI) as a linear representation of time series of other ROIs to infer sparse connectivity networks that are topologically identical across individuals. This formulation allows simultaneous selection of a common set of ROIs across subjects so that their linear combination is best in estimating the time series of the considered ROI. Specifically, l 1-norm is imposed on each subject to filter out spurious or insignificant connections to produce sparse networks. A group-constraint is hence imposed via multi-task learning using a l 2-norm to encourage consistent non-zero connections across subjects. This group-constraint is crucial since the network topology is identical for all subjects while still preserving individual information via different connectivity values. We validated the proposed modeling in mild cognitive impairment identification and promising results achieved demonstrate its superiority in disease characterization, particularly greater sensitivity to early stage brain pathologies. The inferred group-constrained sparse network is found to be biologically plausible and is highly associated with the disease-associated anatomical anomalies. Furthermore, our proposed approach achieved similar classification performance when finer atlas was used to parcellate the brain space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.fil.ion.ucl.ac.uk.spm.

References

  • Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore ET (2008) Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin Soft Matter Phys 77(3 Pt 2), 036104

    Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore ET (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2012) Alzheimer’s disease facts and figgues. Alzheimers Dement 8(2):1–72

    Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, Fourth Edition—text revision (DSMIV-TR). American Psychiatric Association (2000)

  • Azari NP, Rapoport SI, Grady CL, Schapiro MB, Salerno JA, Gonzalez-Aviles A, Horwitz B (1992) Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type. Neurodegeneration 1:101–111

    Google Scholar 

  • Bain LJ, Jedrziewski K, Morrison-Bogorad M, Albert M, Cotman C, Hendrie H, Trojanowski JQ (2008) Healthy brain aging: a meeting report from the Sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on aging. Alzheimers Dement 4(6):443–446

    Article  PubMed Central  PubMed  Google Scholar 

  • Bajo R, Maestú F, Nevado A, Sancho M, Gutiérrez R, Campo P, Castellanos NP, Gil P, Moratti S, Pereda E, Del-Pozo F (2010) Functional connectivity in mild cognitive impairment during a memory task: implications for the disconnection hypothesis. J Alzheimers Dis 22(1):183–193

    PubMed  Google Scholar 

  • Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, Becker JT (2005) Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62(9):1393–1397

    Article  PubMed  Google Scholar 

  • Benton AL (1962) The visual retention test as a constructional praxis task. Confin Neurol 22:141–155

    Article  CAS  PubMed  Google Scholar 

  • Benton AL, Hamsher K (1976) Multilingual Aphasia examination manual. University of Iowa, Iowa City (1976)

  • Bischkopf J, Busse A, Angermeyer MC (2002) Mild cognitive impairment—a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 106:403–414

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Candés EJ, Wakin MB (2008) An introduction to compressive sampling—a sensing/sampling paradigm that goes against the common knowledge in data acquisition. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  • Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusinek H (2000) Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimers disease. Neurobiol Aging 21(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan EV (1991) Cognitive impairment in early, untreated parkinsons disease and its relationship to motor function. Brain Behav Evol 114(5): 2095–2122

    Article  PubMed  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22:1326–1333

    CAS  PubMed  Google Scholar 

  • Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866. doi: 10.1148/radiol.2503080751

    Google Scholar 

  • Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205

    Article  CAS  PubMed  Google Scholar 

  • Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB (2009) Resting-state BOLD networks versus task-associated functional mri for distinguishing Alzheimer’s disease risk groups. Neuroimage 47(4):1678–1690

    Article  PubMed Central  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patient for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283

    Article  PubMed  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostat 9(3):432–441

    Article  Google Scholar 

  • Friston KJ, Frith C, Frackowiak RSJ, Turner R (1995) Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2:166–172

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B, on behalf of the participants of the International Psychogeriatric Association Expert Conference on mild cognitive impairment (2006) Mild cognitive impairment. Lancet 367:1262–1270

    Google Scholar 

  • Gold BT, Jiang Y, Jicha GA, Smith CD (2010) Functional response in ventral temporal cortex differentiates mild cognitive impairment from normal aging. Hum Brain Mapp 31(8):1249–1259

    PubMed Central  PubMed  Google Scholar 

  • Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ (2006) Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology 67(7):1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE (2003) Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 23(3):986–993

    CAS  PubMed  Google Scholar 

  • Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA et al (2004) Mild cognitive impairment can be distinguished from Alzheimer’s disease and normal aging for clinical trials. Arch Neurol 61(1):59–66

    Article  PubMed  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2004) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Google Scholar 

  • Haller S, Missonnier P, Herrmann FR, Rodriguez C, Deiber MP, Nguyen D, Gold G, Lovblad KO, Giannakopoulos P (2012) Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter dti. AJNR Am J Neuroradiol (2012). Epub ahead of print

  • Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI (1987) Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res Brain Res Rev 407(2):294–306

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, Chen K, Reiman E, the Alzheimer’s Disease NeuroImaging Initiative (2010) Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. Neuroimage 50(3):935–949 (2010)

    Google Scholar 

  • Lee H, Lee DS, Kang H, Kim BN, Chung MK (2011) Sparse brain network recovery under compressed sensing. IEEE Trans Med Imaging 30(5):1154–1165

    Article  PubMed  Google Scholar 

  • Liu J, Ji S, Ye J (2009) SLEP: Sparse learning with efficient projections. Arizona State University. http://www.public.asu.edu/jye02/Software/SLEP

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore ET (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews CG, Klove H (1964) Instruction manual for the adult neuropsychology test battery. University of Wisconsin Medical School, Madison

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  • Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44:1414–1422

    Article  Google Scholar 

  • Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The Consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39(9), 1159–1165 (1989)

    Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905

    Article  PubMed Central  PubMed  Google Scholar 

  • Nobili F, Mazzei D, Dessi B, Morbelli S, Brugnolo A, Barbieri P, Girtler N, Sambuceti G, Rodriguez G, Pagani M (2010) Unawareness of memory deficit in amnestic mci: FDG-PET findings. J Alzheimers Dis 22(3):993–1003

    PubMed  Google Scholar 

  • Nobili F, Salmaso D, Morbelli S, Girtler N, Piccardo A, Brugnolo A, Dessi B, Larsson SA, Rodriguez G, Pagani M (2008) Principal component analysis of FDG PET in amnestic MCI.. Eur J Nucl Med Mol Imaging 35(12):2191–2202

    Article  PubMed  Google Scholar 

  • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1285

    Article  PubMed  Google Scholar 

  • Rakotomamonjy A (2003) Variable selection using SVM based criteria. J Mach Learn Res 3:1357–1370

    Google Scholar 

  • Ramsey JD, Hanson SJ, Glymour C (2011) Multi-subject search correctly identifies causal connections and most causal directions in the dcm models of the smith et al. simulation study. Neuroimage 58(3):838–848

    Article  PubMed  Google Scholar 

  • Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  • Reitan RM, Wolfson D (1993) Halstead-Reitan neuropsychological test battery: theory and clinical interpretation. Neuropsychological Press, Tucson

  • Romero-Garcia R, Atienza M, Clemmensen LH, Cantero JL (2012) Effects of network resolution on topological properties of human neocortex. Neuroimage 59(4):3522–3532

    Article  PubMed  Google Scholar 

  • Rothman AJ, Bickel PJ, Levina E (2008) Sparse permutation invariant covariance estimation. Electron J Stat 2:494–515

    Article  Google Scholar 

  • Rubinov M., Sporns O.: Complex networks measures of brain connectivity: Uses and interpretations. Neuroimage 52(3), 1059–1069 (2010). doi:10.1016/j.neuroimage.2009.10.003

    Google Scholar 

  • Sachs GA, Carter R, Holtz LR, Smith F, Stump TE, Tu W, Callahan CM (2011) Cognitive impairment: an independent predictor of excess mortality: a cohort study. Ann Intern Med 155(5):300–308

    Article  PubMed  Google Scholar 

  • Sanabria-Diaz G, Melie-García L, Iturria-Medina Y, Alemán-Gómez Y, Hernández-González G, Valdés-Urrutia L, Galán L, Valdés-Sosa P (2010) Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50(4):1497–1510

    Article  PubMed  Google Scholar 

  • Shen D, Davatzikos C (2002) HAMMER: Heirarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21(11):1421–1439

    Article  PubMed  Google Scholar 

  • Shipley WC (1946) Institute of living scale. Western Psychological Services, Los Angeles

  • Smith A (1968) The symbol-digit modalities test: a neuropsychologic test of learning and other cerebral disorders. Learn Disord 3:83–91

    Google Scholar 

  • Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Jicha GA, Cooper G, Markesbery WR (2007) Brain structural alterations before mild cognitive impairment. Neurology 68(16):1268–1273

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for fMRI. Neuroimage 54(2):875–891

    Article  PubMed  Google Scholar 

  • Squire LR, Zouzounis JA (1988) Self-ratings of memory dysfunction: different findings in depression and amnesia. J Clin Exp Neuropsychol 10(6):727–738

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappelen van Walsum AM, Montez T, Verbunt JPA, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain Behav Evol 132:213–224

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(3 Suppl 2), S69–S74

    Google Scholar 

  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4: e1000,100

  • Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci USA 107(21):9885–9890

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi R, Hanajima R, Hamada M, Shirota Y, Matsumoto H, Terao Y, Ohminami S, Yamakawa Y, Shimada H, Tsuji S, Ugawa Y (2012) Reduced interhemispheric inhibition in mild cognitive impairment. Exp Brain Res 218(1):21–26

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties and optimization. J Neurophysiol 103:297–321

    Article  PubMed  Google Scholar 

  • Varoquaux G, Gramfort A, Poline JB, Thirion B (2010) Brain covariance selection: better individual functional connectivity models using population prior. In: NIPS’10, pp 2334–2342

  • Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28(10):967–978

    Article  PubMed  Google Scholar 

  • Wechsler D (1981) Manual for the wechsler adult intelligence scale—revised. Psychological Corporation, New York

  • Wechsler D (1987) WMS-R: Wechsler memory scale-revised manual. The Psychological Corporation, New York

  • Wee CY, Yap PT, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS ONE 7(5):e37828

    Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc B 68(1):49–67

    Article  Google Scholar 

  • Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter. Neuroimage 50(3):970–983

    Article  PubMed  Google Scholar 

  • Zanetti O, Solerte SB, Cantonni F (2009) Life expectancy in Alzheimer’s disease (AD). Arch Gerontol Geriatr 49:237–243

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institute of Health (NIH) grants EB006733, EB008374, AG041721, EB009634, MH088520, K23-AG028982, as well as a National Alliance for Research in Schizophrenia and Depression Young Investigator Award (L.W.). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Additional information

The Alzheimer’s Disease Neuroimaging Initiative: The details of the ADNI is given in the “Appendix”.

Appendix

Appendix

Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wee, CY., Yap, PT., Zhang, D. et al. Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct Funct 219, 641–656 (2014). https://doi.org/10.1007/s00429-013-0524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0524-8

Keywords

Navigation