Skip to main content
Log in

Testicular cancer: biology and biomarkers

  • Invited Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The term “human germ cell tumors” (GCTs) refers to a heterogeneous group of neoplasms, all with a defined histological appearance. They have specific epidemiological characteristics, clinical behavior, and pathogenesis. Histologically, GCTs contain various tissue elements, which are homologs of normal embryogenesis. We have proposed a subclassification of GCTs in five subtypes, three of which preferentially occur in the testis. These include teratomas and yolk sac tumors of neonates and infants (type I), seminomas and nonseminomas of (predominantly) adolescents and adults (type II), and spermatocytic seminomas of the elderly (type III). Both spontaneous and induced animal models have been reported, of which the relevance for human GCTs is still to be clarified. Multidisciplinary studies have recently shed new light on the (earliest steps in the) pathogenesis of GCTs, mainly in regard of malignant type II GCTs (germ cell cancer (GCC)). This review discusses novel understanding of the pathogenesis of (mainly) GCC, focusing on identification of informative diagnostic markers suitable for application in a clinical setting. These include OCT3/4, SOX9/FOXL2, SOX17/SOX2, as well as embryonic microRNAs. These markers have been identified through studies on normal embryogenesis, specifically related to the gonads, including the germ cell lineage. Their strengths and limitations are discussed as well as the expected future approach to identify the group of individuals at highest risk for development of a GCC. The latter would allow screening of defined populations, early diagnosis, optimal follow-up, and potentially early treatment, preventing long-term side effects of systemic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cunningham JJ et al (2012) Lessons from human teratomas to quide development of safe stem cell therapies. Nat Biotechnol 30(9):849–857

    CAS  PubMed  Google Scholar 

  2. Horwich A, Shipley J, Huddart R (2006) Testicular germ-cell cancer. Lancet 367(9512):754–765

    CAS  PubMed  Google Scholar 

  3. Van Leeuwen FE et al (1993) Second cancer risk following testicular cancer: a follow-up study of 1,909 patients. J Clin Oncol 11:415–424

    PubMed  Google Scholar 

  4. Haugnes HS et al (2010) Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin Oncol 28(30):4649–4657

    PubMed  Google Scholar 

  5. Beyer J et al (2013) Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer. Ann Oncol 24(4):878–888

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Westerman BA et al (2011) A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation. J Exp Med 208(13):2675–2689

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Spiller CM et al (2012) Endogenous Nodal signalling regulates germ cell potency during mammalian testis development. Development 139(22):4123–4132

    CAS  PubMed  Google Scholar 

  8. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5(3):210–222

    CAS  PubMed  Google Scholar 

  9. Woodward PJ et al (2004) Testicular germ cell tumors, in World Health Organization classification of tumours. In: Eble JN et al (eds) Pathology and Genetics of the urinary system and male genital organs. IARC Press, Lyon, pp 217–278

    Google Scholar 

  10. Reuter VE (2005) Origins and molecular biology of testicular germ cell tumors. Mod Pathol 18(Suppl 2):S51–S60

    CAS  PubMed  Google Scholar 

  11. Ye H, Ulbright TM (2012) Difficult differential diagnoses in testicular pathology. Arch Pathol Lab Med 136(4):435–446

    PubMed  Google Scholar 

  12. Honecker F et al (2006) Germ cell lineage differentiation in nonseminomatous germ cell tumors. J Pathol 208:395–400

    CAS  PubMed  Google Scholar 

  13. Looijenga LHJ (2008) Human testicular (non)seminomatous germ cell tumors: patho-biology and optimal diagnostics. J Pathol 218:146–162

    Google Scholar 

  14. Looijenga LH et al (2006) Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res 66(1):290–302

    CAS  PubMed  Google Scholar 

  15. Looijenga LH (2011) Spermatocytic seminoma: toward further understanding of pathogenesis. J Pathol 224(4):431–433

    PubMed  Google Scholar 

  16. Kristensen DG et al (2012) Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype. Cancer Genet 205(9):425–431

    CAS  PubMed  Google Scholar 

  17. Lim J et al (2011) OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J of Pathol 224(4):473–483

    CAS  Google Scholar 

  18. Goriely A et al (2009) Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41:1247–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bergström R et al (1996) Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon. J Natl Cancer Inst 88:727–733

    PubMed  Google Scholar 

  20. Aschim EL et al (2005) Is there an association between maternal weight and the risk of testicular cancer? An epidemiologic study of Norwegian data with emphasis on World War II. Int J Cancer 116(2):327–330

    CAS  PubMed  Google Scholar 

  21. Stephansson O et al (2011) Perinatal risk factors for childhood testicular germ-cell cancer: a Nordic population-based study. Cancer Epidemiol 35(6):e100–e104

    PubMed  Google Scholar 

  22. Cook MB et al (2009) A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer—experiences of the mother. Int J Epidemiol 38(6):1532–1542

    PubMed Central  PubMed  Google Scholar 

  23. Skakkebaek NE (2003) Testicular dysgenesis syndrome. Horm Res 60(Suppl 3):49

    CAS  PubMed  Google Scholar 

  24. Akre O, Richiardi L (2009) Does a testicular dysgenesis syndrome exist? Hum Reprod 24(9):2053–2060

    PubMed  Google Scholar 

  25. Ramlau-Hansen CH et al (2009) Perinatal markers of estrogen exposure and risk of testicular cancer: follow-up of 1,333,873 Danish males born between 1950 and 2002. Cancer Causes Control 20(9):1587–1592

    PubMed  Google Scholar 

  26. Hsieh MH et al (2012) Caucasian male infants and boys with hypospadias exhibit reduced anogenital distance. Hum Reprod 27(6):1577–1580

    PubMed Central  PubMed  Google Scholar 

  27. Zheng Z, Cohn MJ (2011) Developmental basis of sexually dimorphic digit ratios. Proc Natl Acad Sci U S A 108(39):16289–16294

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Auger J, Eustache F (2011) Second to fourth digit ratios, male genital development and reproductive health: a clinical study among fertile men and testis cancer patients. Int J Androl 34(4 Pt 2):e49–e58

    CAS  PubMed  Google Scholar 

  29. Holl K et al (2009) Endogenous steroid hormone levels in early pregnancy and risk of testicular cancer in the offspring: a nested case-referent study. Int J Cancer 124(12):2923–2928

    CAS  PubMed  Google Scholar 

  30. Cools M et al (2006) Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev 27:468–484

    CAS  PubMed  Google Scholar 

  31. Looijenga LH et al (2007) Tumor risk in disorders of sex development (DSD). Best Pract Res Clin Endocrinol Metab 21(3):480–495

    CAS  PubMed  Google Scholar 

  32. Hersmus R et al (2008) New insights into type II germ cell tumor pathogenesis based on studies of patients with various forms of disorders of sex development (DSD). Mol Cell Endocrinol 291(1–2):1–10

    CAS  PubMed  Google Scholar 

  33. Looijenga LH et al (2010) Gonadal tumours and DSD. Best Pract Res Clin Endocrinol Metab 24(2):291–310

    PubMed  Google Scholar 

  34. Pleskacova J et al (2010) Tumor risk in disorders of sex development. Sex Dev 4:259–269

    CAS  PubMed  Google Scholar 

  35. Page DC (1987) Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development 101(Suppl):151–155

    PubMed  Google Scholar 

  36. Skakkebæk NE (1972) Possible carcinoma-in-situ of the testis. Lancet: p. 516–517

  37. Scully RE (1970) Gonadoblastoma. A review of 74 cases. Cancer 25:1340–1356

    CAS  PubMed  Google Scholar 

  38. Hersmus RKN, De Leeuw B, Stoop H, Oosterhuis JW, Wolffenbuttel KP, Drop SLS, Veitia RA, Fellous M, Jaubert F, Looijenga LHJ (2008) FOXL2 and SOX9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J Pathol 215:31–38

    CAS  PubMed  Google Scholar 

  39. Novotny GW et al (2012) MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr Relat Cancer 19(3):365–379

    CAS  PubMed  Google Scholar 

  40. Sonne SB et al (2009) Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res 69(12):5241–5250

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jorgensen A et al (2012) Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. Mol Hum Reprod 18(11):523–534

    CAS  PubMed  Google Scholar 

  42. Eckert D et al (2008) Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol 8(1):106

    PubMed Central  PubMed  Google Scholar 

  43. Netto GJ et al (2008) Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Mod Pathol 21:1337–11344

    CAS  PubMed  Google Scholar 

  44. Werman H et al (2010) Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol 221:433–442

    Google Scholar 

  45. Kristensen DG et al (2013) Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells. Int J Dev Biol 57(2-3-4):309–317

    CAS  PubMed  Google Scholar 

  46. Van Gurp RJLM et al (1994) Human testicular germ cell tumors show biallelic expression of the H19 and IGF2 gene. J Natl Cancer Inst 86:1070–1075

    PubMed  Google Scholar 

  47. Verkerk AJ et al (1997) Unique expression patterns of H19 in human testicular cancers of different etiology. Oncogene 14(1):95–107

    CAS  PubMed  Google Scholar 

  48. Millan JL, Manes T (1988) Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A 1985:3024–3028

    Google Scholar 

  49. Roelofs H et al (1999) Heterogeneity in alkaline phosphatase isozyme expression in human testicular germ cell tumors: an enzyme-/immunohistochemical and molecular analysis. J Pathol 189:236–244

    CAS  PubMed  Google Scholar 

  50. Stoop H et al (2011) Diagnosis of testicular carcinoma in situ '(intratubular and microinvasive)' seminoma and embryonal carcinoma using direct enzymatic alkaline phosphatase reactivity on frozen histological sections. Histopathology 58(3):440–446

    PubMed  Google Scholar 

  51. Strohmeyer T et al (1991) Expression of the hst-1 and c-kit protooncogenes in human testicular germ cell tumors. Cancer Res 51:1811–1816

    CAS  PubMed  Google Scholar 

  52. Rajpert-De Meyts E, Skakkebæk NE (1994) Expression of the c-kit protein product in carcinoma-in-situ and invasive testicular germ cell tumours. Int J Androl 17:85–92

    CAS  PubMed  Google Scholar 

  53. Meyts ER et al (1996) Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes. J Pathol 178(2):166–169

    Google Scholar 

  54. Biermann K et al (2007) c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J Pathol 213(3):311–318

    CAS  PubMed  Google Scholar 

  55. Biermann K, Stoop H, Looijenga L (2012) c-KIT protein expression does not discriminate neoplastic from non-neoplastic intratubular germ cells. Histopathology 60(6):1017–1019

    PubMed  Google Scholar 

  56. Looijenga LHJ et al (2003) Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ cell tumors. Cancer Res 63:7674–7678

    CAS  PubMed  Google Scholar 

  57. Rapley EA et al (2004) Somatic mutations of KIT in familial testicular germ cell tumours. Br J Cancer 90:2397–2401

    CAS  PubMed Central  PubMed  Google Scholar 

  58. McIntyre A et al (2005) Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res 65(18):8085–8089

    CAS  PubMed  Google Scholar 

  59. McIntyre A et al (2005) Activating mutations and/or expression levels of tyrosine kinase receptors GRB7, RAS, and BRAF in testicular germ cell tumors. Neoplasia 7(12):1047–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Looijenga LHJ et al (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63:2244–2250

    CAS  PubMed  Google Scholar 

  61. De Jong JSJ, Gillis AJM, Van Gurp RJHLM, Van de Geijn JGM, De Boer M, Hersmus R, Saunders PTK, Anderson RA, Oosterhuis JW, Looijenga LHJ (2008) Differential expression of SOX17 and SOX2 in human normal and malignant germ cells and stem cells has biological and clinical implications. J Pathol 215:21–30

    PubMed  Google Scholar 

  62. Korkola JE et al (2005) Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene 24(32):5101–5107

    CAS  PubMed  Google Scholar 

  63. Gopalan A et al (2009) Testicular mixed germ cell tumors: a morphological and immunohistochemical study using stem cell markers, OCT3/4, SOX2 and GDF3, with emphasis on morphologically difficult-to-classify areas. Mod Pathol 22(8):1066–1074

    CAS  PubMed  Google Scholar 

  64. van Casteren NJ et al (2008) Noninvasive detection of testicular carcinoma in situ in semen using OCT3/4. Eur Urol 54:153–158

    PubMed  Google Scholar 

  65. Almstrup K et al (2011) Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate. Int J Androl 34(4 Pt 2):e21–e30, discussion e30-1

    CAS  PubMed  Google Scholar 

  66. Stoop H et al (2008) Stem cell factor as a novel diagnostic marker for early malignant germ cells. J Pathol 216:43–54

    CAS  PubMed  Google Scholar 

  67. Rosenberg C et al (2000) Overrepresentation of the short arm of chromosome 12 is related to invasive growth of human testicular seminomas and nonseminomas. Oncogene 19:5858–5862

    CAS  PubMed  Google Scholar 

  68. Lin Y et al (2012) Reciprocal regulation of akt and oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 48(4):627–640

    CAS  PubMed Central  PubMed  Google Scholar 

  69. La Sala G, Farini D, De Felici M (2010) Rapid estrogen signalling in mouse primordial germ cells. Exp Cell Res 316(10):1716–1727

    PubMed  Google Scholar 

  70. Kimura T et al (2008) AKT signaling promotes derivation of embryonic germ cells from primordial germ cells. Development 135(5):869–879

    CAS  PubMed  Google Scholar 

  71. Kimura T, Nakano T (2011) Induction of pluripotency in primordial germ cells. Histol Histopathol 26(5):643–650

    PubMed  Google Scholar 

  72. Moe-Behrens GH et al (2003) Akt/PTEN signaling mediates estrogen-dependent proliferation of primordial germ cells in vitro. Mol Endocrinol 17(12):2630–2638

    CAS  PubMed  Google Scholar 

  73. Alva JA et al (2011) Phosphatase and tensin homolog regulates the pluripotent state and lineage fate choice in human embryonic stem cells. Stem Cells 29(12):1952–1962

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Di Vizio D et al (2005) Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene 10:1882–1894

    Google Scholar 

  75. Teng DH et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57(23):5221–5225

    CAS  PubMed  Google Scholar 

  76. Arnemann J et al (1991) Cloning and sequence analysis of a human Y-chromosome-derived, testicular cDNA, TSPY. Genomics 11(1):108–114

    CAS  PubMed  Google Scholar 

  77. Manz E et al (1993) TSPY-related sequences represent a microheterogeneous gene family organized as constitutive elements in DYZ5 tandem repeat units on the human Y chromosome. Genomics 17(3):726–731

    CAS  PubMed  Google Scholar 

  78. Schnieders F et al (1996) Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues. Hum Mol Genet 5(11):1801–1807

    CAS  PubMed  Google Scholar 

  79. Hildenbrand R et al (1999) Detection of TSPY protein in a unilateral microscopic gonadoblastoma of a Turner mosaic patient with a Y-derived marker chromosome. J Pathol 189(4):623–626

    CAS  PubMed  Google Scholar 

  80. Kersemaekers AM et al (2005) Identification of germ cells at risk for neoplastic transformation in gonadoblastomas: an immunohistochemical study for OCT3/4 and TSPY. Hum Pathol 36:512–521

    CAS  PubMed  Google Scholar 

  81. Ng SB et al (2008) Gonadoblastoma-associated mixed germ cell tumour in 46, XY complete gonadal dysgenesis (Swyer syndrome): analysis of Y chromosomal genotype and OCT3/4 and TSPY expression profile. Histopathology 52(5):644–646

    CAS  PubMed  Google Scholar 

  82. Oram SW et al (2006) TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 6:154

    PubMed Central  PubMed  Google Scholar 

  83. Vogel T, Schmidtke J (1998) Structure and function of TSPY, the Y-chromosome gene coding for the "testis-specific protein". Cytogenet Cell Genet 80(1–4):209–213

    CAS  PubMed  Google Scholar 

  84. Dechend F et al (2000) TSPY variants in six loci on the human Y chromosome. Cytogenet Cell Genet 91(1–4):67–71

    CAS  PubMed  Google Scholar 

  85. Schubert S et al (2000) Molecular evolution of the murine tspy genes. Cytogenet Cell Genet 91(1–4):239–242

    CAS  PubMed  Google Scholar 

  86. Schubert S et al (2003) Generation and characterization of a transgenic mouse with a functional human TSPY. Biol Reprod 69(3):968–975

    CAS  PubMed  Google Scholar 

  87. Sturgeon CM et al (2008) National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54(12):e11–e79

    CAS  PubMed  Google Scholar 

  88. von Eyben FE et al (2000) Lactate dehydrogenase isoenzyme 1 is the most important LD isoenzyme in patients with testicular germ cell tumor. Acta Oncol 39(4):509–517

    Google Scholar 

  89. Kawakami T et al (2004) XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 363(9402):40–42

    CAS  PubMed  Google Scholar 

  90. Looijenga LH et al (1997) X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. Am J Pathol 151(2):581–590

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  PubMed  Google Scholar 

  92. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    CAS  PubMed  Google Scholar 

  93. Rosa A, Brivanlou AH (2011) A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J 30(2):237–248

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    CAS  PubMed  Google Scholar 

  95. Aylon Y et al (2006) A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20(19):2687–2700

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Van Echten-Arends J et al (1995) No recurrent structural abnormalities in germ cell tumors of the adult testis apart from i(12p). Genes Chromosom & Cancer 14:133–144

    Google Scholar 

  97. Gillis AJ et al (2007) High-throughput microRNAome analysis in human germ cell tumours. J Pathol 213(3):319–328

    CAS  PubMed  Google Scholar 

  98. Palmer RD et al (2010) Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 70(7):2911–2923

    CAS  PubMed Central  PubMed  Google Scholar 

  99. McIver SC et al (2012) A Unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 7(4):e35553

    CAS  PubMed Central  PubMed  Google Scholar 

  100. McIver SC et al (2012) miRNA and mammalian male germ cells. Hum Reprod Update 18(1):44–59

    CAS  PubMed  Google Scholar 

  101. de Boer CM et al (2012) DICER1 RNase IIIb domain mutations are infrequent in testicular germ cell tumours. BMC Research Notes 5:569

    PubMed Central  PubMed  Google Scholar 

  102. Murray MJ, Coleman N (2012) Testicular cancer: a new generation of biomarkers for malignant germ cell tumours. Nat Rev Urol 9:298–300

    CAS  PubMed  Google Scholar 

  103. Belge G et al (2012) Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur Urol 61(5):1068–1069

    CAS  PubMed  Google Scholar 

  104. Rijlaarsdam MA et al (2013) miMsg: a target enrichment algorithm for predicted miR-mRNA interactions based on relative ranking of matched expression data. Bioinformatics 29(13):1638–1646

    CAS  PubMed  Google Scholar 

  105. Murray MJ et al (2011) Identification of microRNAs From the miR-371 373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol 135(1):119–125

    CAS  PubMed  Google Scholar 

  106. Rapley EA et al (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41(7):807–810

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kanetsky PA et al (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41(7):811–815

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Turnbull C et al (2010) Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 42(7):604–607

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Kanetsky PA et al (2011) A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 20(15):3109–3117

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kratz CP et al (2011) Variants in or near KITLG, BAK1, DMRT1, and TERT-CLPTM1L predispose to familial testicular germ cell tumour. J Med Genet 48(7):473–476

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Kratz CP et al (2011) A stratified genetic risk assessment for testicular cancer. Int J Androl 34(4 Pt 2):e98–e102

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ferlin A et al (2012) Variants in KITLG predispose to testicular germ cell cancer independently from spermatogenic function. Endocr Relat Cancer 19(1):101–108

    CAS  PubMed  Google Scholar 

  113. Kristiansen W et al (2012) Gene variations in sex hormone pathways and the risk of testicular germ cell tumour: a case-parent triad study in a Norwegian-Swedish population. Hum Reprod 27(5):1525–1535

    CAS  PubMed  Google Scholar 

  114. Dalgaard MD et al (2012) A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet 49(1):58–65

    PubMed Central  PubMed  Google Scholar 

  115. Horvath A et al (2009) Functional phosphodiesterase 11A mutations may modify the risk of familial and bilateral testicular germ cell tumors. Cancer Res 69(13):5301–5306

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Greene MH et al (2010) Familial testicular germ cell tumors in adults: 2010 summary of genetic risk factors and clinical phenotype. Endocr Relat Cancer 17(2):R109–R121

    PubMed Central  PubMed  Google Scholar 

  117. Schumacher FR et al (2013) Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum Mol Genet 22(13):2748–2753

    CAS  PubMed  Google Scholar 

  118. Chung CC et al (2013) Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 45(6):680–685

    CAS  PubMed  Google Scholar 

  119. Ruark E et al (2013) Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet 45(6):686–689

    CAS  PubMed  Google Scholar 

  120. Basten SG et al (2013) Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet 9(4):e1003384

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Zeron-Medina J et al (2013) A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155(2):410–422

    CAS  PubMed  Google Scholar 

  122. Looijenga LH, Van Agthoven T, Biermann K (2013) Development of malignant germ cells—the genvironmental hypothesis. Int J Dev Biol 57(2-3-4):241–253

    CAS  PubMed  Google Scholar 

  123. Amatruda JF et al (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231

    CAS  PubMed  Google Scholar 

  124. Neumann JC et al (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108(32):13153–13158

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Neumann JC et al (2011) Zebrafish models of germ cell tumor. Methods Cell Biol 105:3–24

    PubMed Central  PubMed  Google Scholar 

  126. Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 21:364–382

    CAS  PubMed  Google Scholar 

  127. Stevens LC, Varnum DS (1974) The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 37:369–380

    CAS  PubMed  Google Scholar 

  128. Walt H, Oosterhuis JW, Stevens LC (1993) Experimental testicular germ cell tumorigenesis in mouse strains with and without spontaneous tumours differs from development of germ cell tumours of the adult human testis. Int J Androl 16:267–271

    CAS  PubMed  Google Scholar 

  129. Kedde M et al (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131(7):1273–1286

    CAS  PubMed  Google Scholar 

  130. Youngren KK et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ketting RF (2007) A dead end for microRNAs. Cell 131(7):1226–1227

    CAS  PubMed  Google Scholar 

  132. Nelson VR et al (2012) Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc Natl Acad Sci U S A 109(41):16414–16415

    CAS  Google Scholar 

  133. Heaney JD et al (2008) Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res 68(13):5193–5197

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Runyan C et al (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133(24):4861–4869

    CAS  PubMed  Google Scholar 

  135. Wylie C (1999) Germ cells. Cell 96(2):165–174

    CAS  PubMed  Google Scholar 

  136. Holm TM et al (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8(4):275–285

    CAS  PubMed  Google Scholar 

  137. Looijenga LH et al (1998) Genomic imprinting in testicular germ cell tumours. Apmis 106(1):187–197

    CAS  PubMed  Google Scholar 

  138. Lee J et al (2009) Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5(1):76–86

    CAS  PubMed  Google Scholar 

  139. Krentz AD, Kim Shinseog MM, Cook MS, Capel B, Zhu R, Matin A, Sarver AL, Parker KL, Griswold MD, Looijenga LHJ, Bardwell VJ, Zarkower D (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A 106(52):22323–22328

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Matson CK et al (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476(7358):101–104

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13(3):163–174

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Uhlenhaut NH, Treier M (2006) Foxl2 function in ovarian development. Mol Genet Metab 88(3):225–234

    CAS  PubMed  Google Scholar 

  143. Uhlenhaut NH et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142

    CAS  PubMed  Google Scholar 

  144. Raymond CS et al (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Welsh M et al (2008) Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118(4):1479–1490

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank everyone who has contributed to the study throughout the years, particularly the patients and their relatives.

Conflict of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leendert H. J. Looijenga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Looijenga, L.H.J., Stoop, H. & Biermann, K. Testicular cancer: biology and biomarkers. Virchows Arch 464, 301–313 (2014). https://doi.org/10.1007/s00428-013-1522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1522-1

Keywords

Navigation