Skip to main content
Log in

Planarian GSK3s are involved in neural regeneration

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 30 January 2008

Abstract

Glycogen synthase kinase-3 (GSK3) is a key element in several signaling cascades that is known to be involved in both patterning and neuronal organization. It is, therefore, a good candidate to play a role in neural regeneration in planarians. We report the characterization of three GSK3 genes in Schmidtea mediterranea. Phylogenetic analysis shows that Smed-GSK3.1 is highly conserved compared to GSK3 sequences from other species, whereas Smed-GSK3.2 and Smed-GSK3.3 are more divergent. Treatment of regenerating planarians with 1-azakenpaullone, a synthetic GSK3 inhibitor, suggests that planarian GSK3s are essential for normal differentiation and morphogenesis of the nervous system. Cephalic ganglia appear smaller and disconnected in 1-azakenpaullone-treated animals, whereas visual axons are ectopically projected, and the pharynx does not regenerate properly. This phenotype is consistent with a role for Smed-GSK3s in neuronal polarization and axonal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderton BH (1999) Alzheimer’s disease: clues from flies and worms. Curr Biol 9:R106–R109

    Article  PubMed  CAS  Google Scholar 

  • Baguñà J, Ballester R (1978) The nervous system in planarians: peripheral and gastrodermal plexuses, pharynx innervation and the relationship between central nervous system structure and the aceolomate organization. J Morph 155:237–252

    Article  Google Scholar 

  • Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132:2907–2916

    Article  PubMed  CAS  Google Scholar 

  • Cebria F, Newmark PA (2007) Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134:833–837

    Article  PubMed  CAS  Google Scholar 

  • Cebria F, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev Growth Differ 44:135–146

    Article  PubMed  CAS  Google Scholar 

  • Cebria F, Guo T, Jopek J, Newmark P (2007) Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol 207(2):394–406

    Article  CAS  Google Scholar 

  • Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. Faseb J 18:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105:721–732

    Article  PubMed  CAS  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH (2003) Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J 22:494–501

    Article  PubMed  CAS  Google Scholar 

  • Emily-Fenouil F, Ghiglione C, Lhomond G, Lepage T, Gache C (1998) GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125:2489–2498

    PubMed  CAS  Google Scholar 

  • Farnesi R, Tei S (1980) Dugesia lugubris s.l. auricles: research into the ultrastructure and on the functional efficiency. Riv Biol 73:65–77

    PubMed  CAS  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359(Pt 1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RS, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC (2002) Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem 277:2176–2185

    Article  PubMed  CAS  Google Scholar 

  • Fredieu JR, Cui Y, Maier D, Danilchik MV, Christian JL (1997) Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos. Dev Biol 186:100–114

    PubMed  CAS  Google Scholar 

  • Gogel S, Wakefield S, Tear G, Klambt C, Gordon-Weeks PR (2006) The Drosophila microtubule associated protein Futsch is phosphorylated by Shaggy/Zeste-white 3 at an homologous GSK3beta phosphorylation site in MAP1B. Mol Cell Neurosci 33:188–199

    Article  PubMed  CAS  Google Scholar 

  • Goold RG, Gordon-Weeks PR (2004) Glycogen synthase kinase 3beta and the regulation of axon growth. Biochem Soc Trans 32:809–811

    Article  PubMed  CAS  Google Scholar 

  • Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006) The Wnt code: cnidarians signal the way. Oncogene 25:7450–7460

    Article  PubMed  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB (1995) Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374:617–622

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham H, Tanaka T, Brinkman BC, Gleeson JG (2006) GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci 32:118–132

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kumamoto H, Okamoto K, Umesono Y, Sakai M, Sanchez Alvarado A, Agata K (2004) Morphological and functional recovery of the planarian photosensing system during head regeneration. Zoolog Sci 21:275–283

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Krupnik VE, Sokol SY (1998) Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol 8:591–594

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120:123–135

    PubMed  CAS  Google Scholar 

  • Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, Kaibuchi K, Woodgett JR, Anton ES, Snider WD (2006) Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 52:981–996

    Article  PubMed  CAS  Google Scholar 

  • Kishida K, Naka KI (1967) Amino acids and the spikes from the retinal ganglion cells. Science 156:648–650

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi C, Saito Y, Ogawa K, Agata K (2007) Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev Biol 306:714–724

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T (2004) 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett 14:413–416

    Article  PubMed  CAS  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21(6):1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Li R (2005) Neuronal polarity: until GSK-3 do us part. Curr Biol 15:R198–R200

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27–39

    Article  PubMed  CAS  Google Scholar 

  • Marcus EA, Kintner C, Harris W (1998) The role of GSK3beta in regulating neuronal differentiation in Xenopus laevis. Mol Cell Neurosci 12:269–280

    Article  PubMed  CAS  Google Scholar 

  • Marsal M, Pineda D, Salo E (2003) Gtwnt-5 a member of the wnt family expressed in a subpopulation of the nervous system of the planarian Girardia tigrina. Gene Expr Patterns 3:489–495

    Article  PubMed  CAS  Google Scholar 

  • Mills J, Digicaylioglu M, Legg AT, Young CE, Young SS, Barr AM, Fletcher L, O, Connor TP, Dedhar S (2003) Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. J Neurosci 23:1638–1648

    PubMed  CAS  Google Scholar 

  • Mineta K, Nakazawa M, Cebria F, Ikeo K, Agata K, Gojobori T (2003) Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc Natl Acad Sci USA 100:7666–7671

    Article  PubMed  Google Scholar 

  • Miyasaka T, Ding Z, Gengyo-Ando K, Oue M, Yamaguchi H, Mitani S, Ihara Y (2005) Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis 20:372–383

    Article  PubMed  CAS  Google Scholar 

  • Muller WA, Teo R, Mohrlen F (2004) Patterning a multi-headed mutant in Hydractinia: enhancement of head formation and its phenotypic normalization. Int J Dev Biol 48:9–15

    Article  PubMed  Google Scholar 

  • Newmark PA (2005) Opening a new can of worms: a large-scale RNAi screen in planarians. Dev Cell 8:623–624

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet 15:314–319

    Article  PubMed  CAS  Google Scholar 

  • Nogi T, Levin M (2005) Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 287:314–335

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Takeuchi K, Agata K (2005) Neural projections in planarian brain revealed by fluorescent dye tracing. Zoolog Sci 22:535–546

    Article  PubMed  Google Scholar 

  • Oviedo NJ, Newmark PA, Sanchez Alvarado A (2003) Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea. Dev Dyn 226:326–333

    Article  PubMed  CAS  Google Scholar 

  • Parker PJ, Caudwell FB, Cohen P (1983) Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem 130:227–234

    Article  PubMed  CAS  Google Scholar 

  • Pineda D, Salo E (2002) Planarian Gtsix3, a member of the Six/so gene family, is expressed in brain branches but not in eye cells. Gene Expr Patterns 2:169–173

    Article  PubMed  CAS  Google Scholar 

  • Plickert G, Jacoby V, Frank U, Muller W, Mokady O (2006) Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 298:368–378

    Article  PubMed  CAS  Google Scholar 

  • Rosania G, Merlie J Jr, Gray N, Chang Y, Schultz P, Heald R (1999) A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: biochemical identification using Xenopus egg extracts. Proc Natl Acad Sci USA 96:4797–4802

    Article  PubMed  CAS  Google Scholar 

  • Salinas PC (2005) Retrograde signalling at the synapse: a role for Wnt proteins. Biochem Soc Trans 33:1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Salo E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559

    Article  PubMed  CAS  Google Scholar 

  • Salo E, Baguna J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63–80

    PubMed  CAS  Google Scholar 

  • Sanchez Alvarado A, Newmark P (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96:5049–5054

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou A (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Schaffer B, Wiedau-Pazos M, Geschwind DH (2003) Gene structure and alternative splicing of glycogen synthase kinase 3 beta (GSK-3beta) in neural and non-neural tissues. Gene 302:73–81

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B (1999) Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 13:2028–2038

    PubMed  CAS  Google Scholar 

  • Siegfried E, Perkins LA, Capaci TM, Perrimon N (1990) Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. Nature 345:825–829

    Article  PubMed  CAS  Google Scholar 

  • Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Satoh A, Ide H, Tamura K (2005) Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Dev Biol 286:361–375

    Article  PubMed  CAS  Google Scholar 

  • Takadera T, Ohyashiki T (2007) Caspase-dependent apoptosis induced by calcineurin inhibitors was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical cells. Brain Res 1133:20–26

    Article  PubMed  CAS  Google Scholar 

  • Takadera T, Yoshikawa R, Ohyashiki T (2006) Thapsigargin-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci Lett 408:124–128

    Article  PubMed  CAS  Google Scholar 

  • Teo R, Mohrlen F, Plickert G, Muller WA, Frank U (2006) An evolutionary conserved role of Wnt signaling in stem cell fate decision. Dev Biol 289:91–99

    Article  PubMed  CAS  Google Scholar 

  • Tsonis PA, Del Rio-Tsonis K, Wallace JL, Burns JC, Hofmann MC, Millan JL, Washabaugh CH (1996) Can insights into urodele limb regeneration be achieved with cell cultures and retroviruses? Int J Dev Biol 40:813–816

    PubMed  CAS  Google Scholar 

  • Umemori H, Linhoff MW, Ornitz DM, Sanes JR (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–270

    Article  PubMed  CAS  Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209:31–39

    Article  PubMed  CAS  Google Scholar 

  • Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA (2004) Differential stability of beta-catenin along the animal–vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131:2947–2956

    Article  PubMed  CAS  Google Scholar 

  • Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294(Pt 3):625–629

    PubMed  CAS  Google Scholar 

  • Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. Embo J 9:2431–2438

    PubMed  CAS  Google Scholar 

  • Zhou FQ, Snider WD (2005) Cell biology. GSK-3beta and microtubule assembly in axons. Science 308:211–214

    Article  CAS  Google Scholar 

  • Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42:897–912

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. F Cebrià for providing Smed-RoboA and Smed-Slit riboprobes and for the critical reading of the manuscript, Dr. M Riutort for phylogenetic analysis, Dr. H Orii for providing anti-VC-1, and Dr. I Patten for advice on English style in a previous version. This work was supported by grants BMC2002-03992 and BFU2005-00422 from the Ministerio de Educación y Ciencia, Spain, and grant 2005SGR00769 from AGAUR (Generalitat de Catalunya, Spain). T.A. received a C-RED postdoctoral fellowship from La Generalitat de Catalunya, and M.M. was the recipient of a ‘Formación de Personal Investigador’ fellowship from Ministerio de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa Adell or Emili Saló.

Additional information

Communicated by D.A. Weisblat

Teresa Adell and Maria Marsal contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00427-008-0206-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adell, T., Marsal, M. & Saló, E. Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218, 89–103 (2008). https://doi.org/10.1007/s00427-007-0199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0199-3

Keywords

Navigation