Skip to main content

Advertisement

Log in

7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adelman JP, Bond CT, Pessia M, Maylie J (1995) Episodic ataxia results from voltage-dependent potassium channels with altered functions. Neuron 15:1449–1454

    Article  CAS  PubMed  Google Scholar 

  2. Arbour L, Rezazadeh S, Eldstrom J, Weget-Simms G, Rupps R, Dyer Z, Tibbits G, Accili E, Casey B, Kmetic A, Sanatani S, Fedida D (2008) A KCNQ1 V205M missense mutation causes a high rate of long QT syndrome in a First Nations community of northern British Columbia: a community-based approach to understanding the impact. Genet Med 10:545–550

    Article  PubMed  Google Scholar 

  3. Babovic-Vuksanovic D, Jacobson RM, Lindor NM, Weiler CR (2005) Selective antibody immune deficiency in a patient with Smith-Lemli-Opitz syndrome. J Inherit Metab Dis 28:181–186

    Article  CAS  PubMed  Google Scholar 

  4. Balogh G, Peter M, Liebisch G, Horvath I, Torok Z, Nagy E, Maslyanko A, Benko S, Schmitz G, Harwood JL, Vigh L (2010) Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta 1801:1036–1047

    Article  CAS  PubMed  Google Scholar 

  5. Balogh I, Koczok K, Szabo GP, Torok O, Hadzsiev K, Csabi G, Balogh L, Dzsudzsak E, Ajzner E, Szabo L, Csakvary V, Olah AV (2012) Mutational spectrum of Smith-Lemli-Opitz syndrome patients in Hungary. Mol Syndromol 3:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12:881–922

    Article  CAS  PubMed  Google Scholar 

  7. Batta AK, Salen G, Tint GS, Shefer S (1995) Identification of 19-nor-5,7,9(10)-cholestatrien-3 beta-ol in patients with Smith-Lemli-Opitz syndrome. J Lipid Res 36:2413–2418

    CAS  PubMed  Google Scholar 

  8. Batta AK, Tint GS, Shefer S, Abuelo D, Salen G (1995) Identification of 8-dehydrocholesterol (cholesta-5,8-dien-3 beta-ol) in patients with Smith-Lemli-Opitz syndrome. J Lipid Res 36:705–713

    CAS  PubMed  Google Scholar 

  9. Beby-Defaux A, Maille L, Chabot S, Nassimi A, Oriot D, Agius G (2001) Fatal adenovirus type 7b infection in a child with Smith-Lemli-Opitz syndrome. J Med Virol 65:66–69

    Article  CAS  PubMed  Google Scholar 

  10. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, B SA, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A 103:17414–17419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benesch MG, Lewis RN, McElhaney RN (2015) A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 191:123–135

    Article  CAS  PubMed  Google Scholar 

  12. Bianconi SE, Cross JL, Wassif CA, Porter FD (2015) Pathogenesis, epidemiology diagnosis and clinical aspects of Smith-Lemli-Opitz syndrome. Expert Opin Orphan Drugs 3:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ (2007) Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  14. Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385

    Article  CAS  PubMed  Google Scholar 

  15. Chang HM, Reitstetter R, Mason RP, Gruener R (1995) Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol 143:51–63

    Article  CAS  PubMed  Google Scholar 

  16. Corso G, Gelzo M, Barone R, Clericuzio S, Pianese P, Nappi A, Dello RA (2011) Sterol profiles in plasma and erythrocyte membranes in patients with Smith-Lemli-Opitz syndrome: a six-year experience. Clin Chem Lab Med: CCLM/FESCC 49:2039–2046

    Article  CAS  Google Scholar 

  17. Cross JL, Iben J, Simpson CL, Thurm A, Swedo S, Tierney E, Bailey-Wilson JE, Biesecker LG, Porter FD, Wassif CA (2015) Determination of the allelic frequency in Smith-Lemli-Opitz syndrome by analysis of massively parallel sequencing data sets. Clin Genet 87:570–575

    Article  CAS  PubMed  Google Scholar 

  18. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468

    Article  CAS  PubMed  Google Scholar 

  19. Elias ER, Irons MB, Hurley AD, Tint GS, Salen G (1997) Clinical effects of cholesterol supplementation in six patients with the Smith-Lemli-Opitz syndrome (SLOS). Am J Med Genet 68:305–310

    Article  CAS  PubMed  Google Scholar 

  20. Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31

    PubMed  PubMed Central  Google Scholar 

  21. Fernandez C, Martin M, Gomez-Coronado D, Lasuncion MA (2005) Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression. J Lipid Res 46:920–929

    Article  CAS  PubMed  Google Scholar 

  22. Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International Union of Pharmacology. LIII Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  CAS  PubMed  Google Scholar 

  24. Haas D, Garbade SF, Vohwinkel C, Muschol N, Trefz FK, Penzien JM, Zschocke J, Hoffmann GF, Burgard P (2007) Effects of cholesterol and simvastatin treatment in patients with Smith-Lemli-Opitz syndrome (SLOS). J Inherit Metab Dis 30:375–387

    Article  CAS  PubMed  Google Scholar 

  25. Hackos DH, Chang TH, Swartz KJ (2002) Scanning the intracellular S6 activation gate in the shaker K+ channel. J Gen Physiol 119:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hajdu P, Varga Z, Pieri C, Panyi G, and Jr Gaspar R. (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. 445: 674-682.

  27. Hajdu P, Varga Z, Pieri C, Panyi G, Gaspar R Jr (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch - Eur J Physiol 445:674–682

    Article  CAS  Google Scholar 

  28. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch - Eur J Physiol 391:85–100

    Article  CAS  Google Scholar 

  29. Irons M, Elias ER, Salen G, Tint GS, Batta AK (1993) Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet 341:1414

    Article  CAS  PubMed  Google Scholar 

  30. Keller RK, Arnold TP, Fliesler SJ (2004) Formation of 7-dehydrocholesterol-containing membrane rafts in vitro and in vivo, with relevance to the Smith-Lemli-Opitz syndrome. J Lipid Res 45:347–355

    Article  CAS  PubMed  Google Scholar 

  31. Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, Rivera J (2006) Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. J Exp Med 203:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee SY, Banerjee A, MacKinnon R (2009) Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels. PLoS Biol 7:e47

    PubMed  Google Scholar 

  33. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V (2010) Cholesterol and ion channels. Sub-cellular Biochem 51:509–549

    Article  CAS  Google Scholar 

  34. Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol 5:65

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Chipot C, Shao X, Cai W (2011) The effects of 7-dehydrocholesterol on the structural properties of membranes. Phys Biol 8:056005

    Article  PubMed  Google Scholar 

  36. Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243:147–154

    Article  CAS  PubMed  Google Scholar 

  37. Lyons AB, Blake SJ, and Doherty KV (2013) Flow cytometric analysis of cell division by dilution of CFSE and related dyes. Current protocols in cytometry/editorial board, J Paul Robinson, managing editor [et al] Chapter 9: Unit9 11

  38. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171:131–137

    Article  CAS  PubMed  Google Scholar 

  39. Matteson DR, and Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. 307: 468-471, 1984.

  40. Moog C, Luu B, Altmeyer A, Bischoff P (1989) Studies on the immunosuppressive properties of 7,25 dihydroxycholesterol--II. Effects on early steps of T-cell activation. Int J Immunopharmacol 11:559–565

    Article  CAS  PubMed  Google Scholar 

  41. Nowaczyk MJ, Waye JS (2001) The Smith-Lemli-Opitz syndrome: a novel metabolic way of understanding developmental biology, embryogenesis, and dysmorphology. Clin Genet 59:375–386

    Article  CAS  PubMed  Google Scholar 

  42. Olah AV, Szabo GP, Varga J, Balogh L, Csabi G, Csakvary V, Erwa W, Balogh I (2013) Relation between biomarkers and clinical severity in patients with Smith-Lemli-Opitz syndrome. Eur J Pediatr 172:623–630

    Article  CAS  PubMed  Google Scholar 

  43. Petho Z, Balajthy A, Bartok A, Bene K, Somodi S, Szilagyi O, Rajnavolgyi E, Panyi G, Varga Z (2016) The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunol Lett 171:60–69

    Article  CAS  PubMed  Google Scholar 

  44. Picazo-Juarez G, Romero-Suarez S, Nieto-Posadas A, Llorente I, Jara-Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladron-de-Guevara E, Islas LD, Rosenbaum T (2011) Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem 286:24966–24976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Porter FD (2008) Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet: EJHG 16:535–541

    Article  CAS  PubMed  Google Scholar 

  46. Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Price M, Lee SC, Deutsch C (1989) Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci U S A 86:10171–10175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ren G, Jacob RF, Kaulin Y, Dimuzio P, Xie Y, Mason RP, Tint GS, Steiner RD, Roullet JB, Merkens L, Whitaker-Menezes D, Frank PG, Lisanti MP, Cox RH, Tulenko TN (2011) Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith-Lemli-Opitz syndrome. Mol Genet Metab 104:346–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD (2014) Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J Biol Chem 289:31983–31994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–779

    Article  CAS  PubMed  Google Scholar 

  51. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    Article  CAS  PubMed  Google Scholar 

  52. Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM (2012) Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2 + - and voltage-gated K+ (BK) channels. J Biol Chem 287:20509–20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Somodi S, Balajthy A, Szilagyi O, Petho Z, Harangi M, Paragh G, Panyi G, Hajdu P (2013) Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cell Immunol 281:20–26

    Article  CAS  PubMed  Google Scholar 

  54. Staneva G, Chachaty C, Wolf C, Quinn PJ (2010) Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith-Lemli-Opitz syndrome. J Lipid Res 51:1810–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Syrbe S, Hedrich UB, Riesch E, Djemie T, Muller S, Moller RS, Maher B, Hernandez-Hernandez L, Synofzik M, Caglayan HS, Arslan M, Serratosa JM, Nothnagel M, May P, Krause R, Loffler H, Detert K, Dorn T, Vogt H, Kramer G, Schols L, Mullis PE, Linnankivi T, Lehesjoki AE, Sterbova K, Craiu DC, Hoffman-Zacharska D, Korff CM, Weber YG, Steinlin M, Gallati S, Bertsche A, Bernhard MK, Merkenschlager A, Kiess W, Gonzalez M, Zuchner S, Palotie A, Suls A, De Jonghe P, Helbig I, Biskup S, Wolff M, Maljevic S, Schule R, Sisodiya SM, Weckhuysen S, Lerche H, Lemke JR (2015) De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 47:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Szabo GP, Olah AV, Kozak L, Balogh E, Nagy A, Blahakova I, Olah E (2010) A patient with Smith-Lemli-Opitz syndrome: novel mutation of the DHCR7 gene and effects of therapy with simvastatin and cholesterol supplement. Eur J Pediatr 169:121–123

    Article  PubMed  Google Scholar 

  57. Szilagyi O, Boratko A, Panyi G, Hajdu P (2013) The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse. Pflugers Arch - Eur J Physiol 465:1341–1353

    Article  CAS  Google Scholar 

  58. Tierney E, Conley SK, Goodwin H, Porter FD (2010) Analysis of short-term behavioral effects of dietary cholesterol supplementation in Smith-Lemli-Opitz syndrome. Am J Med Genet A 152A:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, Salen G (1994) Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med 330:107–113

    Article  CAS  PubMed  Google Scholar 

  60. Tombola F, Pathak MM, Isacoff EY (2006) How does voltage open an ion channel? Annu Rev Cell Dev Biol 22:23–52

    Article  CAS  PubMed  Google Scholar 

  61. Tulenko TN, Boeze-Battaglia K, Mason RP, Tint GS, Steiner RD, Connor WE, Labelle EF (2006) A membrane defect in the pathogenesis of the Smith-Lemli-Opitz syndrome. J Lipid Res 47:134–143

    Article  CAS  PubMed  Google Scholar 

  62. van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67:2–17

    PubMed  Google Scholar 

  63. Varga Z, Gurrola-Briones G, Papp F, Rodriguez de la Vega RC, Pedraza-Alva G, Tajhya RB, Gaspar R, Cardenas L, Rosenstein Y, Beeton C, Possani LD, Panyi G (2012) Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Mol Pharmacol 82:372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Varga Z, Hajdu P, Panyi G (2010) Ion channels in T lymphocytes: an update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunol Lett 130:19–25

    Article  CAS  PubMed  Google Scholar 

  65. Witsch-Baumgartner M, Lanthaler B (2015) Birthday of a syndrome: 50 years anniversary of Smith-Lemli-Opitz Syndrome. Eur J Hum Genet: EJHG 23:277–278

    Article  PubMed  Google Scholar 

  66. Xu L, Liu W, Sheflin LG, Fliesler SJ, Porter NA (2011) Novel oxysterols observed in tissues and fluids of AY9944-treated rats: a model for Smith-Lemli-Opitz syndrome. J Lipid Res 52:1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu L, Porter NA (2015) Free radical oxidation of cholesterol and its precursors: Implications in cholesterol biosynthesis disorders. Free Radic Res 49:835–849

    Article  CAS  PubMed  Google Scholar 

  68. Xu L, Sheflin LG, Porter NA, Fliesler SJ (2012) 7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome. Biochim Biophys Acta 1821:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Mecenatura (P.H.), TÁMOP-4.2.2.D-15/1/KONV-2015-0016 project (implemented through the New Széchenyi Plan co-financed by the European Social Fund, G.P.), GINOP 2.3.2-15 C122500 to GP, KTIA_NAP_13-2-2015-0009 (Z.V.), Hungarian Scientific Research Fund OTKA NN111006 (L.V.). P.H. is a Lajos Szodoray Fellow and supported by János Bolyai Fellowship. Z.V. is awarded with János Bolyai Fellowship. A.B was cofinanced by Astellas Pharma Fellowship and National Excellence Program. This research was partly realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program – Elaborating and operating an inland student and researcher personal support system convergence program.” The project was subsidized by the European Union and cofinanced by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Hajdu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balajthy, A., Somodi, S., Pethő, Z. et al. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Arch - Eur J Physiol 468, 1403–1418 (2016). https://doi.org/10.1007/s00424-016-1851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1851-4

Keywords

Navigation