Skip to main content
Log in

Propofol-induced pain sensation involves multiple mechanisms in sensory neurons

  • Sensory physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Propofol, a commonly used intravenous anesthetic agent, is known to at times cause pain sensation upon injection in humans. However, the molecular mechanisms underlying this effect are not fully understood. Although propofol was reported to activate human transient receptor potential ankyrin 1 (TRPA1) in this regard, its action on human TRP vanilloid 1 (TRPV1), another nociceptive receptor, is unknown. Furthermore, whether propofol activates TRPV1 in rodents is controversial. Here, we show that propofol activates human and mouse TRPA1. In contrast, we did not observe propofol-evoked human TRPV1 activation, while the ability of propofol to activate mouse TRPV1 was very small. We also found that propofol caused increases in intracellular Ca2+ concentrations in a considerable portion of dorsal root ganglion (DRG) cells from mice lacking both TRPV1 and TRPA1, indicating the existence of TRPV1- and TRPA1-independent mechanisms for propofol action. In addition, propofol produced action potential generation in a type A γ-amino butyric acid (GABAA) receptor-dependent manner. Finally, we found that both T-type and L-type Ca2+ channels are activated downstream of GABAA receptor activation by propofol. Thus, we conclude that propofol may cause pain sensation through multiple mechanisms involving not only TRPV1 and TRPA1 but also voltage-gated channels downstream of GABAA receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880. doi:10.1126/science.1149213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Aptel H, Hilaire C, Pieraut S, Boukhaddaoui H, Mallie S, Valmier J, Scamps F (2007) The Cav3.2/alpha1H T-type Ca2+ current is a molecular determinant of excitatory effects of GABA in adult sensory neurons. Mol Cell Neurosci 36:293–303. doi:10.1016/j.mcn.2007.07.009

  3. Ault B, Hildebrand LM (1994) GABAA receptor-mediated excitation of nociceptive afferents in the rat isolated spinal cord-tail preparation. Neuropharmacology 33:109–114

    Article  CAS  PubMed  Google Scholar 

  4. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282. doi:10.1016/j.cell.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  5. Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D (2013) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77:667–679. doi:10.1016/j.neuron.2012.12.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Carlton SM, Zhou S, Coggeshall RE (1999) Peripheral GABAA receptors: evidence for peripheral primary afferent depolarization. Neuroscience 93:713–722

    Article  CAS  PubMed  Google Scholar 

  7. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  CAS  PubMed  Google Scholar 

  8. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. doi:10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  9. Chung MK, Jung SJ, Oh SB (2011) Role of TRP channels in pain sensation. Adv Exp Med Biol 704:615–636. doi:10.1007/978-94-007-0265-3_33

    Article  CAS  PubMed  Google Scholar 

  10. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942. doi:10.1038/nature01868

    Article  CAS  PubMed  Google Scholar 

  11. Doenicke AW, Roizen MF, Rau J, Kellermann W, Babl J (1996) Reducing pain during propofol injection: the role of the solvent. Anesth Analg 82:472–474

    CAS  PubMed  Google Scholar 

  12. Dundee JW (1979) New i.v. anaesthetics. Br J Anaesth 51:641–648

    Article  CAS  PubMed  Google Scholar 

  13. Fischer MJ, Leffler A, Niedermirtl F, Kistner K, Eberhardt M, Reeh PW, Nau C (2010) The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors. J Biol Chem 285:34781–34792. doi:10.1074/jbc.M110.143958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Franks NP (2006) Molecular targets underlying general anaesthesia. Br J Pharmacol 147(Suppl 1):S72–S81. doi:10.1038/sj.bjp.0706441

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Funk K, Woitecki A, Franjic-Wurtz C, Gensch T, Mohrlen F, Frings S (2008) Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 4:32. doi:10.1186/1744-8069-4-32

    Article  PubMed Central  PubMed  Google Scholar 

  16. Garcia PS, Kolesky SE, Jenkins A (2010) General anesthetic actions on GABAA receptors. Curr Neuropharmacol 8:2–9. doi:10.2174/157015910790909502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568. doi:10.1073/pnas.0609598103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jalota L, Kalira V, George E, Shi YY, Hornuss C, Radke O, Pace NL, Apfel CC (2011) Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ 342:d1110. doi:10.1136/bmj.d1110

    Article  PubMed  Google Scholar 

  19. Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor beta3 subunit. FASEB J 17:250–252. doi:10.1096/fj.02-0611fje

    CAS  PubMed  Google Scholar 

  20. Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851

    CAS  PubMed  Google Scholar 

  21. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE (2008) Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem 283:26208–26216. doi:10.1074/jbc.M801912200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Klement W, Arndt JO (1991) Pain on injection of propofol: effects of concentration and diluent. Br J Anaesth 67:281–284

    Article  CAS  PubMed  Google Scholar 

  23. Kurganov E, Zhou Y, Saito S, Tominaga M (2014) Heat and AITC activate green anole TRPA1 in a membrane-delimited manner. Pflugers Arch 466:1873–1884. doi:10.1007/s00424-013-1420-z

  24. Lee SP, Buber MT, Yang Q, Cerne R, Cortes RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153:1739–1749. doi:10.1038/bjp.2008.85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545. doi:10.1038/nature05544

    Article  CAS  PubMed  Google Scholar 

  26. Mandadi S, Tominaga T, Numazaki M, Murayama N, Saito N, Armati PJ, Roufogalis BD, Tominaga M (2006) Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800. Pain 123:106–116. doi:10.1016/j.pain.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  27. Mao S, Garzon-Muvdi T, Di Fulvio M, Chen Y, Delpire E, Alvarez FJ, Alvarez-Leefmans FJ (2012) Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation. J Neurophysiol 108:834–852. doi:10.1152/jn.00970.2011

    Article  PubMed Central  PubMed  Google Scholar 

  28. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci U S A 105:8784–8789. doi:10.1073/pnas.0711038105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mohammadi B, Haeseler G, Leuwer M, Dengler R, Krampfl K, Bufler J (2001) Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors. Eur J Pharmacol 421:85–91

  30. Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23:6058–6062

    CAS  PubMed  Google Scholar 

  31. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100:8002–8006. doi:10.1073/pnas.1337252100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase C epsilon and identification of two target serine residues. J Biol Chem 277:13375–13378. doi:10.1074/jbc.C200104200

    Article  CAS  PubMed  Google Scholar 

  33. Orser BA, Wang LY, Pennefather PS, MacDonald JF (1994) Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci 14:7747–7760

    CAS  PubMed  Google Scholar 

  34. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62. doi:10.1085/jgp.200308906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720. doi:10.1038/nrn1496

    Article  CAS  PubMed  Google Scholar 

  36. Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 445:639–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37:375–378

    Article  CAS  PubMed  Google Scholar 

  38. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522. doi:10.1085/jgp.200609576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  40. Tan CH, Onsiong MK (1998) Pain on injection of propofol. Anaesthesia 53:468–476. doi:10.1046/j.1365-2044.1998.00405.x

    Article  CAS  PubMed  Google Scholar 

  41. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  42. Usala M, Thompson SA, Whiting PJ, Wafford KA (2003) Activity of chlormethiazole at human recombinant GABAA and NMDA receptors. Br J Pharmacol 140:1045–1050. doi:10.1038/sj.bjp.0705540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703. doi:10.1074/jbc.M803568200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yevenes GE, Zeilhofer HU (2011) Allosteric modulation of glycine receptors. Br J Pharmacol 164:224–236. doi:10.1111/j.1476-5381.2011.01471.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zeller A, Arras M, Lazaris A, Jurd R, Rudolph U (2005) Distinct molecular targets for the central respiratory and cardiac actions of the general anesthetics etomidate and propofol. FASEB J 19:1677–1679. doi:10.1096/fj.04-3443fje

    CAS  PubMed  Google Scholar 

  46. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279. doi:10.1038/nn1843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Junichi Nabekura (Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan), Dr. Motohiro Nishida (Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, Okazaki, Japan), Dr. Hidemasa Furue (Division of Neural Signaling, National Institute for Physiological Sciences, Okazaki, Japan), and Dr. Hitoshi Ishibashi (School of Allied Health Sciences, Kitasato University, Kanagawa, Japan) for their helpful suggestion and discussion. This work was supported by grants to Makoto Tominaga from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tominaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimoto, R., Kashio, M. & Tominaga, M. Propofol-induced pain sensation involves multiple mechanisms in sensory neurons. Pflugers Arch - Eur J Physiol 467, 2011–2020 (2015). https://doi.org/10.1007/s00424-014-1620-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1620-1

Keywords

Navigation