Skip to main content
Log in

Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pubertal girls

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The influence of training status on the oxygen uptake (\( \dot{V}{\text{O}}_{ 2} \)) response to heavy intensity exercise in pubertal girls has not previously been investigated. We hypothesised that whilst training status-related adaptations would be evident in the \( \dot{V}{\text{O}}_{ 2} \), heart rate (HR) and deoxyhaemoglobin ([HHb]) kinetics of pubertal swimmers during both lower and upper body exercise, they would be more pronounced during upper body exercise. Eight swim-trained (T; 14.2 ± 0.7 years) and eight untrained (UT; 14.5 ± 1.3 years) girls completed a number of constant-work-rate transitions on cycle and upper body ergometers at 40% of the difference between the gas exchange threshold and peak \( \dot{V}{\text{O}}_{ 2} \). The phase II \( \dot{V}{\text{O}}_{ 2} \) time constant (τ) was significantly shorter in the trained girls during both cycle (T: 21 ± 6 vs. UT: 35 ± 11 s; P < 0.01) and upper body exercise (T: 29 ± 8 vs. UT: 44 ± 8 s; P < 0.01). The \( \dot{V}{\text{O}}_{ 2} \) slow component was not influenced by training status. The [HHb] τ was significantly shorter in the trained girls during both cycle (T: 12 ± 2 vs. UT: 20 ± 6 s; P < 0.01) and upper body exercise (T: 13 ± 3 vs. UT: 21 ± 7 s; P < 0.01), as was the HR τ (cycle, T: 36 ± 5 vs. UT: 53 ± 9 s; upper body, T: 32 ± 3 vs. UT: 43 ± 2; P < 0.01). This study suggests that both central and peripheral factors contribute to the faster \( \dot{V}{\text{O}}_{ 2} \) kinetics in the trained girls and that differences are evident in both lower and upper body exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayabakan C, Akalin F, Mengutay S, Cotuk B, Odabas I, Ozuak A (2006) Athlete’s heart in prepubertal male swimmers. Cardiol Young 16:61–66

    Article  PubMed  Google Scholar 

  • Bailey SJ, Wilkerson DP, DiMenna FJ, Jones AM (2009) Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol 106:1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Barstow TJ, Mole PA (1991) Linear and nonlinear characteristics of oxygen-uptake kinetics during heavy exercise. J Appl Physiol 71:2099–2106

    PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas-exchange. J Appl Physiol 60:2020–2027

    Google Scholar 

  • Berger NJA, Tolfrey K, Williams AG, Jones AM (2006) Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38:504–512

    Article  PubMed  Google Scholar 

  • Boone J, Koppo K, Bouckaert J (2008) The VO2 response to submaximal ramp cycle exercise: influence of ramp slope and training status. Respir Physiol Neurol 161:291–297

    Article  Google Scholar 

  • Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564

    PubMed  CAS  Google Scholar 

  • Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH (2000) Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 89:1744–1752

    PubMed  CAS  Google Scholar 

  • Cleuziou C, Lecoq AM, Candau R, Courteix D, Guenon P, Obert P (2002) Kinetics of oxygen uptake at the onset of moderate and heavy exercise in trained and untrained prepubertal children. Sci Sports 17:291–296

    Article  Google Scholar 

  • Davis JA, Vodak P, Wilmore JH, Vodak J, Kurtz P (1976) Anaerobic threshold and maximal aerobic power for 3 modes of exercise. J Appl Physiol 41:544–550

    PubMed  CAS  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120

    PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2004) Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. J Appl Physiol 97:998–1005

    Article  PubMed  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B (1973) Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 87:485–497

    Article  PubMed  CAS  Google Scholar 

  • Ferreira LF, Koga S, Barstow TJ (2007) Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol 103:1999–2004

    Article  PubMed  Google Scholar 

  • Figueira TR, Caputo F, Machado CEP, Denadai BS (2008) Aerobic fitness level typical of elite athletes is not associated with even faster VO2 kinetics during cycling exercise. J Sport Sci Med 7:132–138

    Google Scholar 

  • Fournier M, Ricci J, Taylor AW, Ferguson RJ, Montpetit RR, Chaitman BR (1982) Skeletal-muscle adaptation in adolescent boys—sprint and endurance training and detraining. Med Sci Sports Exerc 14:453–456

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, Saltin B, Saubert CW, Armstron Rb, Piehl K (1972) Enzyme-activity and fiber composition in skeletal-muscle of trained and untrained men. J Appl Physiol 33:312–319

    PubMed  CAS  Google Scholar 

  • Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD (1996) Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol 80:988–998

    PubMed  CAS  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95:149–158

    PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle—effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    PubMed  CAS  Google Scholar 

  • Johnson MA, Polgar J, Weightma D, Appleton D (1973) Data on distribution of fiber types in 36 human muscles—autopsy study. J Neurol Sci 18:111–129

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Burnley M (2005) Effects of exercise modality on VO2 kinetics. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 95–114

    Google Scholar 

  • Jones AM, Koppo K (2005) Effect of training on VO2 kinetics and performance. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 373–397

    Google Scholar 

  • Jones AM, Berger NJA, Wilkerson DP, Roberts CL (2006) Effects of “priming” exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions. J Appl Physiol 101:1432–1441

    Article  PubMed  CAS  Google Scholar 

  • Katch VL (1983) Physical conditioning of children. J Adolesc Health 3:241–246

    Article  CAS  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Fukuba Y, Fukuoka Y, Kondo N (1996) Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Respir Physiol 103:195–202

    Article  PubMed  CAS  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Kondo N, Fukuba Y, Barstow TJ (1999) Kinetics of oxygen uptake during supine and upright heavy exercise. J Appl Physiol 87:253–260

    PubMed  CAS  Google Scholar 

  • Koppo K, Bouckaert J (2005) Prior arm exercise speeds the VO2 kinetics during arm exercise above the heart level. Med Sci Sports Exerc 37:613–619

    Article  PubMed  Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2002) Oxygen uptake kinetics during high-intensity arm and leg exercise. Respir Physiol Neurol 133:241–250

    Article  Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2004) Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc 36:225–232

    Article  PubMed  Google Scholar 

  • Krustrup P, Hellsten Y, Bangsbo J (2004) Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J Physiol Lond 559:335–345

    Article  PubMed  CAS  Google Scholar 

  • Krustrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J (2009) Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol-London 587:1843–1856

    Article  PubMed  CAS  Google Scholar 

  • Kuno SY, Takahashi H, Fujimoto K, Akima H, Miyamaru M, Nemoto I, Itai Y, Katsuta S (1995) Muscle metabolism during exercise using P-31 nuclear-magnetic-resonance spectroscopy in adolescents. Eur J Appl Physiol Occup Physiol 70:301–304

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Roseguini B (2008) Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training vs aerobic endurance training. J Physiol Pharmacol 59:71–88

    PubMed  Google Scholar 

  • MacPhee SL, Shoemaker JK, Paterson DH, Kowalchuk JM (2005) Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. J Appl Physiol 99:1822–1834

    Article  PubMed  Google Scholar 

  • Mahon AD, Vaccaro P (1989) Ventilatory threshold and VO2max changes in children following endurance training. Med Sci Sports Exerc 21:425–431

    PubMed  CAS  Google Scholar 

  • Marwood S, Roche D, Rowland T, Garrard M, Unnithan V (2010) Faster pulmonary oxygen uptake kinetics in trained versus untrained male adolescents. Med Sci Sports Exerc 42:127–134

    PubMed  Google Scholar 

  • Masuda K, Takakura H, Furuichi Y, Iwase S, Jue T (2010) NIRS measurement of O2 dynamics in contracting blood and buffer perfused hindlimb muscle. In: Takahashi E, Bruley DF (eds) Oxygen transport to tissue, vol XXXI. Springer, New York, pp 323–328

    Chapter  Google Scholar 

  • McKay BR, Paterson DH, Kowalchuk JM (2009) Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol 107:128–138

    Article  PubMed  Google Scholar 

  • Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol Lond 571:669–681

    Article  PubMed  CAS  Google Scholar 

  • Murias JM, Kowalchuk JM, Paterson DH (2010) Time course and mechanisms of adaptations in cardiorespiratory fitness with endurance training in older and younger men. J Appl Physiol 108:621–627

    Article  PubMed  Google Scholar 

  • Nottin S, Nguyen LD, Terbah M, Obert P (2004) Left ventricular function in endurance-trained children by tissue Doppler imaging. Med Sci Sports Exerc 36:1507–1513

    Article  PubMed  Google Scholar 

  • Obert P, Cleuziou C, Candau R, Courteix D, Lecoq AM, Guenon P (2000) The slow component of O2 uptake kinetics during high-intensity exercise in trained and untrained prepubertal children. Int J Sports Med 21:31–36

    Article  PubMed  CAS  Google Scholar 

  • Obert P, Nottin S, Baquet G, Thevenet D, Gamelin FX, Berthoin S (2009) Two months of endurance training does not alter diastolic function evaluated by TDI in 9–11-year-old boys and girls. Br J Sports Med 43:132–135

    Article  PubMed  CAS  Google Scholar 

  • Ogita F, Hara M, Tabata I (1996) Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 157:435–441

    Article  PubMed  CAS  Google Scholar 

  • Phillips SM, Green HJ, MacDonald MJ, Hughson RL (1995) Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol 79:1914–1920

    PubMed  CAS  Google Scholar 

  • Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ (1994) VO2 slow component: physiological and functional significance. Med Sci Sports Exerc 26:1354–1358

    PubMed  CAS  Google Scholar 

  • Poole DC, Barstow TJ, McDonough P, Jones AM (2008) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Dodd S, Beadle RE (1985) Oxygen uptake kinetics in trained athletes differing in VO2 max. Eur J Appl Physiol 54:306–308

    Article  CAS  Google Scholar 

  • Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ (2001) Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol 537:291–303

    Article  PubMed  CAS  Google Scholar 

  • Rowland TW, Verzeas MR, Walsh CA (1991) Aerobic responses to walking training in sedentary adolescents. J Adolesc Health 12:30–34

    Article  PubMed  CAS  Google Scholar 

  • Rowland TW, Goff D, Popowski B, DeLuca P, Ferrone L (1998) Cardiac responses to exercise in child distance runners. Int J Sports Med 19:385–390

    Article  PubMed  CAS  Google Scholar 

  • Rowland T, Bougault V, Walther G, Nottin S, Vinett A, Obert P (2009) Cardiac responses to swim bench exercise in age-group swimmers and non-athletic children. J Sci Med Sport 12:266–272

    Article  PubMed  Google Scholar 

  • Schneider DA, Wing AN, Morris NR (2002) Oxygen uptake and heart rate kinetics during heavy exercise: a comparison between arm cranking and leg cycling. Eur J Appl Physiol 88:100–106

    Article  PubMed  CAS  Google Scholar 

  • Seiyama A, Hazeki O, Tamura M (1988) Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J Biochem 103:419–424

    PubMed  CAS  Google Scholar 

  • Shoemaker JK, Phillips SM, Green HJ, Hughson RL (1996) Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res 31:278–286

    PubMed  CAS  Google Scholar 

  • Simon J, Young JL, Blood DK, Segal KR, Case RB, Gutin B (1986) Plasma lactate and ventilation thresholds in trained and untrained cyclists. J Appl Physiol 60:777–781

    PubMed  CAS  Google Scholar 

  • Tanner JM (1962) Growth of adolescence. Blackwell, Oxford

  • Taylor DJ, Kemp GJ, Thompson CH, Radda GK (1997) Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 174:321–324

    Article  PubMed  CAS  Google Scholar 

  • Tschakovsky ME, Hughson RL (1999) Interaction of factors determining oxygen uptake at the onset of exercise. J Appl Physiol 86:1101–1113

    PubMed  CAS  Google Scholar 

  • Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, Schena F, Ferretti G (1997) Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 161:459–464

    Article  PubMed  CAS  Google Scholar 

  • Whipp BJ (1994) The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc 26:1319–1326

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 33:351–356

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K (1982) Parameters of ventilatory and gas-exchange dynamics during exercise. J Appl Physiol 52:1506–1513

    PubMed  CAS  Google Scholar 

  • Wilkerson DP, Berger NJA, Jones AM (2006) Influence of hyperoxia on pulmonary O-2 uptake kinetics following the onset of exercise in humans. Respir Physiol Neurol 153:92–106

    Article  CAS  Google Scholar 

  • Winlove MA, Jones AM, Welsman JR (2010) Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls. Eur J Appl Physiol 108:1169–1179

    Article  PubMed  Google Scholar 

  • Zanconato S, Buchthal S, Barstow TJ, Cooper DM (1993) P-31-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 74:2214–2218

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melitta A. McNarry.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNarry, M.A., Welsman, J.R. & Jones, A.M. Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pubertal girls. Eur J Appl Physiol 111, 621–631 (2011). https://doi.org/10.1007/s00421-010-1681-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1681-6

Keywords

Navigation