Skip to main content

Advertisement

Log in

Relationship between disc margin to fovea distance and central visual field defect in normal tension glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To investigate the relationship between ocular geometric factors, including temporal disc margin to fovea distance (DFD) measured by optic disc stereophotography (ODP) and central visual field (VF) defect, in normal-tension glaucoma (NTG) patients.

Methods

This retrospective, single-center, cross-sectional study included 88 eyes of 88 NTG patients with mild VF defects (MD > −6.0 dB). NTG patients were divided into two groups according to VF tests: central VF-invading and central VF-sparing groups. Optic nerve head (ONH) parameters including disc dimensions, peripapillary atrophy (PPA), and DFD were obtained by ODP, and retinal nerve fiber layer (RNFL) thickness was measured by Stratus optical coherence tomography (OCT).

Results

In the invading group, DFD was shorter (3.642 ± 0.401 mm) than in the sparing group (3.877 ± 0.278 mm; p = 0.002). The sparing group had more vertically oval ONH (p = 0.023) and wider temporal PPA width (p = 0.031). The RNFL thickness in the invading group was thinner in the temporal and inferior quadrants, but thicker in the superior quadrant than that of the sparing group. In a multiple linear regression analysis, DFD was the only geometric factor associated with degree of central VF involvement (p = 0.002). DFD was positively correlated with temporal RNFL thickness in the sparing group (r = 0.484, p < 0.001) but not in the invading group (r = −0.080, p = 0.631).

Conclusions

Eyes with a shorter DFD should be monitored carefully because central VF involvement appears to be related to shorter DFD in NTG patients with mild VF defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143

    Article  CAS  PubMed  Google Scholar 

  2. Radius RL, Gonzales M (1981) Anatomy of the lamina cribrosa in human eyes. Arch Ophthalmol 99:2159–2162

    Article  CAS  PubMed  Google Scholar 

  3. Kolker AE (1977) Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc 75:539–555

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fujita K, Yasuda N, Oda K, Yuzawa M (2006) Reading performance in patients with central visual field disturbance due to glaucoma. Nippon Ganka Gakkai Zasshi 110:914–918

    PubMed  Google Scholar 

  5. Coeckelbergh TR, Brouwer WH, Cornelissen FW, Van Wolffelaar P, Kooijman AC (2002) The effect of visual field defects on driving performance: a driving simulator study. Arch Ophthalmol 120:1509–1516

    Article  PubMed  Google Scholar 

  6. Francis BA, Hong B, Winarko J, Kawji S, Dustin L, Chopra V (2011) Vision loss and recovery after trabeculectomy: risk and associated risk factors. Arch Ophthalmol 129:1011–1017

    Article  PubMed  Google Scholar 

  7. Su D, Park SC, Simonson JL, Liebmann JM, Ritch R (2012) Progression pattern of initial parafoveal scotomas in glaucoma. Ophthalmology 120:520–527

    Article  PubMed  Google Scholar 

  8. Kimura Y, Hangai M, Morooka S, Takayama K, Nakano N, Nukada M, Ikeda HO, Akagi T, Yoshimura N (2012) Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci 53:6472–6478

    Article  PubMed  Google Scholar 

  9. Park HY, Jung KI, Na KS, Park SH, Park CK (2012) Visual field characteristics in normal-tension glaucoma patients with autonomic dysfunction and abnormal peripheral microcirculation. Am J Ophthalmol 154(3):466.e1–475.e1

    Article  Google Scholar 

  10. Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R (2011) Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology 118:1782–1789

    Article  PubMed  Google Scholar 

  11. Jung KI, Park HY, Park CK (2012) Characteristics of optic disc morphology in glaucoma patients with parafoveal scotoma compared to peripheral scotoma. Invest Ophthalmol Vis Sci 53:4813–4820

    Article  PubMed  Google Scholar 

  12. Lee M, Cho EH, Lew HM, Ahn J (2012) Relationship between ocular pulse amplitude and glaucomatous central visual field defect in normal-tension glaucoma. J Glaucoma 21:596–600

    Article  PubMed  Google Scholar 

  13. Kim DM, Seo JH, Kim SH, Hwang SS (2007) Comparison of localized retinal nerve fiber layer defects between a low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma patients. J Glaucoma 16:293–296

    Article  PubMed  Google Scholar 

  14. Mozaffarieh M, Flammer J (2013) New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 13:43–49

    Article  CAS  PubMed  Google Scholar 

  15. Thonginnetra O, Greenstein VC, Chu D, Liebmann JM, Ritch R, Hood DC (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19:151–157

    Article  PubMed Central  PubMed  Google Scholar 

  16. Budenz DL (1997) Glaucomatous visual field loss. In: Budenz DL (ed) Atlas of visual field. Lippincott-Raven, Philadelphia, pp 143–193

    Google Scholar 

  17. Hodapp E, Parrish RK, Anderson DR (1993) Clinical decisions in glaucoma. Mosby, St. Louis, pp 52–61

    Google Scholar 

  18. Gillespie BW, Musch DC, Guire KE, Mills RP, Lichter PR, Janz NK, Wren PA, Group CS (2003) The collaborative initial glaucoma treatment study: baseline visual field and test–retest variability. Invest Ophthalmol Vis Sci 44:2613–2620

    Article  PubMed  Google Scholar 

  19. Lee M, Yoo H, Ahn J (2013) Comparison of disc analysis algorithms provided by Cirrus OCT and stereo optic-disc photography in normal and open angle glaucoma patients. Curr Eye Res 38:605–613

    Article  PubMed  Google Scholar 

  20. Rohrschneider K (2004) Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci 45:3257–3258

    Article  PubMed  Google Scholar 

  21. Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garcia-Feijoo J (2008) Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci 49:3018–3025

    Article  PubMed  Google Scholar 

  22. Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, Ritch R (2011) Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 52:940–946

    Article  PubMed  Google Scholar 

  23. Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM (2012) Optic disc change with incipient myopia of childhood. Ophthalmology 119(21–26):e21–e23

    Article  Google Scholar 

  24. Tezel G, Dorr D, Kolker AE, Wax MB, Kass MA (2000) Concordance of parapapillary chorioretinal atrophy in ocular hypertension with visual field defects that accompany glaucoma development. Ophthalmology 107:1194–1199

    Article  CAS  PubMed  Google Scholar 

  25. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM (2011) beta-Zone parapapillary atrophy and the rate of retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 52:4422–4427

    Article  PubMed  Google Scholar 

  26. Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, Liebmann JM (2011) The region of largest beta-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology 118:2409–2413

    Article  PubMed  Google Scholar 

  27. Kawano J, Tomidokoro A, Mayama C, Kunimatsu S, Tomita G, Araie M (2006) Correlation between hemifield visual field damage and corresponding parapapillary atrophy in normal-tension glaucoma. Am J Ophthalmol 142:40–45

    Article  PubMed  Google Scholar 

  28. Chui TY, Zhong Z, Burns SA (2011) The relationship between peripapillary crescent and axial length: Implications for differential eye growth. Vision Res 51:2132–2138

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chihara E, Tanihara H (1992) Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol 230:511–517

    Article  CAS  PubMed  Google Scholar 

  30. Chen YF, Wang TH, Lin LL, Hung PT (1997) Influence of axial length on visual field defects in primary open-angle glaucoma. J Formos Med Assoc 96:968–971

    CAS  PubMed  Google Scholar 

  31. Chauhan BC, O’Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120:535–543

    Article  PubMed  Google Scholar 

Download references

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see:

http://www.textcheck.com/certificate/T63BWA

Conflict of interest

The authors have no conflict or financial interest in the subject matter of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Jin, H. & Ahn, J. Relationship between disc margin to fovea distance and central visual field defect in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 252, 307–314 (2014). https://doi.org/10.1007/s00417-013-2513-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2513-2

Keywords

Navigation