Skip to main content

Advertisement

Log in

An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The stability of the majorite component in garnet has been experimentally investigated at high pressure and high temperature, focusing on the effect of bulk composition and temperature. High-pressure experiments were performed in a multi-anvil apparatus, at pressures ranging from 6 to 14.5 GPa, and temperatures between 1400 and 1700 °C. Experiments were performed in a range of bulk compositions in the system SiO2–Al2O3–Cr2O3–CaO–MgO with varying Cr/(Cr + Al) ratios. The majorite content of garnet gradually increases with pressure, and the composition of the garnet, specifically the Cr/(Cr + Al) ratio, exerts a significant effect on the majorite substitution. We found no significant effect of temperature. We use the experimental results in combination with the literature data to derive two empirical geobarometers, which can be used to determine the equilibration pressure of natural majoritic garnets of peridotitic and eclogitic bulk compositions. The barometer for peridotitic compositions is

$${\text{P}} = - 77.1 + 27.6 \times {\text{Si}} + 1.67 \times {\text{Cr}}$$

And the barometer for eclogitic compositions is

$${\text{P}} = - 29.6 + 11.8 \times {\text{Si}} + 7.81 \times {\text{Na}} + 4.49 \times {\text{Ca}}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in systems Mg4Si4012–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high-pressures and temperatures. Phys Earth Planet Inter 15(1):90–106

    Article  Google Scholar 

  • Akaogi M, Akimoto S (1979) High-pressure phase-equilibria in a garnet lherzolite, with special reference to Mg2+–Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19(1):31–51

    Article  Google Scholar 

  • Akaogi M, Navrotsky A, Yagii T, Akimoto S (1987) Pyroxene-garnet transformation: thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Terrapub, Tokyo, pp 251–260

    Google Scholar 

  • Alifirova TA, Pokhilenko LN, Ovchinnikov YI, Donnelly CL, Riches AJV, Taylor LA (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int Geol Rev 54(9):1071–1092

    Article  Google Scholar 

  • Banas A, Stachel T, Muehlenbachs K, McCandless TE (2007) Diamonds from the Buffalo Head Hills, Alberta: formation in a non-conventional setting. Lithos 93(1–2):199–213

    Article  Google Scholar 

  • Berry AJ, O’Neill HSC (2004) A XANES determination of the oxidation state of chromium in silicate glasses. Am Miner 89(5–6):790–798

    Article  Google Scholar 

  • Bindi L, Dymshits AM, Bobrov AV, Litasov KD, Shatskiy AF, Ohtani E, Litvin YA (2011) Crystal chemistry of sodium in the Earth’s interior: the structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 degrees C. Am Miner 96(2–3):447–450

    Article  Google Scholar 

  • Bobrov AV, Kojitani H, Akaogi M, Litvin YA (2008) Phase relations on the diopside-jadeite-hedenbergite join up to 24 GPa and stability of Na-bearing majoritic garnet. Geochim Cosmochim Acta 72(9):2392–2408

    Article  Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited—reversed experimental-determination at 500-1200-degrees-C and retrieved thermochemical properties. Am Miner 80(3–4):231–238

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96(1–2):15–26

    Article  Google Scholar 

  • Boyd FR, Gurney JJ, Richardson SH (1985) Evidence for a 150–200-km thick archean lithosphere from diamond inclusion thermobarometry. Nature 315(6018):387–389

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2008) Geobarometry for peridotites: experiments in simple and natural systems from 6 to 10 GPa. J Petrol 49(1):3–24

    Article  Google Scholar 

  • Collerson KD, Hapugoda S, Kamber BS, Williams Q (2000) Rocks from the mantle transition zone: majorite-bearing xenoliths from malaita, southwest pacific. Science 288(5469):1215–1223

    Article  Google Scholar 

  • Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E (2010) Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. Geochim Cosmochim Ac 74(20):5939–5957

    Article  Google Scholar 

  • Cookenboo HO, Grutter HS (2010) Mantle-derived indicator mineral compositions as applied to diamond exploration. Geochem: Explor Environ, Anal 10(1):81–95

    Google Scholar 

  • Davies RA, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume? Lithos 77(1–4):99–111

    Article  Google Scholar 

  • Degtyareva O, McMahon MI, Nelmes RJ (2004) High-pressure structural studies of group-15 elements. High Pressure Res 24:319–356

    Article  Google Scholar 

  • Doroshev AM, Brey GP, Girnis AV, Turkin AI, Kogarko LN (1997) Pyrope-knorringite garnets in the earths mantle: experiments in the MgO–Al2O3–SiO2–Cr2O3 system. Geol Geofiz 38(2):523–545

    Google Scholar 

  • Draper DS, Xirouchakis D, Agee CB (2003a) Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of the majorite transition in the martian mantle. High Press Res 24(3):319–356

    Google Scholar 

  • Draper DS, Xirouchakis D, Agee CB (2003b) Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of the majorite transition in the martian mantle. Phys Earth Planet Inter 139(1–2):149–169

    Article  Google Scholar 

  • Dymshits AM, Bobrov AV, Bindi L, Litvin YA, Litasov KD, Shatskiy AF, Ohtani E (2013) Na-bearing majoritic garnet in the Na2MgSi5O12–Mg3Al2Si3O12 join at 11–20 GPa: phase relations, structural peculiarities and solid solutions. Geochim Cosmochim Acta 105:1–13

    Article  Google Scholar 

  • Dymshits AM, Litasov KD, Sharygin IS, Shatskiy A, Ohtani E, Suzuki A, Funakoshi K (2014) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. J Geophys Res Solid Earth 119(11):8034–8046

    Article  Google Scholar 

  • Frost DJ (2003) The structure and sharpness of (Mg, Fe)(2)SiO4 phase transformations in the transition zone. Earth Planet Sci Lett 216(3):313–328

    Article  Google Scholar 

  • Frost DJ (2008) The upper mantle and transition zone. Elements 4(3):171–176

    Article  Google Scholar 

  • Ganguly J, Freed AM, Saxena SK (2009) Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. Phys Earth Planet Inter 172(3–4):257–267

    Article  Google Scholar 

  • Gasparik T (1989) Transformation of enstatite–diopside–jadeite pyroxenes to garnet. Contrib Miner Petrol 102(4):389–405

    Article  Google Scholar 

  • Gasparik T (2002) Experimental investigation of the origin of majoritic garnet inclusions in diamonds. Phys Chem Miner 29(3):170–180

    Article  Google Scholar 

  • Girnis AV, Brey GP, Doroshev AM, Turkin AI, Simon N (2003) The system MgO–Al2O3–SiO2–Cr2O3 revisited: reanalysis of Doroshev et al.’s (1997) experiments and new experiments. Eur J Mineral 15(6):953–964

    Article  Google Scholar 

  • Green DH, Falloon TJ (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson INS (ed) The Earth’s mantle; composition, structure, and evolution. Cambridge University Press, Cambridge, pp 311–378

    Google Scholar 

  • Grutter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77(1–4):841–857

    Article  Google Scholar 

  • Gurney JJ, Switzer GS (1973) Discovery of garnets closely related to diamonds in Finsch Pipe, South-Africa. Contrib Mineral Petrol 39(2):103–116

    Article  Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultradeep (Greater Than 300 Kilometers), Ultramafic Upper Mantle Xenoliths. Science 248(4958):993–996

    Article  Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Miner Mag 74(2):189–215

    Article  Google Scholar 

  • Herzberg C, Zhang JZ (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res Solid Earth 101:8271–8295

    Article  Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res Solid Earth 107. doi:10.1029/2001JB000597

  • Hutchison MT (1997) Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions. PhD Thesis, University of Edinburgh

  • Irifune T (1987) An experimental investigation of the pyroxene garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45(4):324–336

    Article  Google Scholar 

  • Irifune T, Ohtani E, Kumazawa M (1982) Stability field of knorringite Mg3Cr2Si3O12 at high-pressure and its implication to the occurrence of Cr-rich pyrope in the upper mantle. Phys Earth Planet Inter 27(4):263–272

    Article  Google Scholar 

  • Irifune T, Sekine T, Ringwood AE, Hibberson WO (1986) The eclogite–garnetite transformation at high-pressure and some geophysical implications. Earth Planet Sci Lett 77(2):245–256

    Article  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140(6):734–753

    Article  Google Scholar 

  • Kato T (1986) Stability relation of (Mg, Fe)SiO3 garnets, major constituents in the earths interior. Earth Planet Sci Lett 77(3–4):399–408

    Article  Google Scholar 

  • Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H(2)O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143:387–395

    Article  Google Scholar 

  • Kesson SE, Ringwood AE, Hibberson WO (1994) Kimberlite melting relations revisited. Earth Planet Sci Lett 121:261–262

    Article  Google Scholar 

  • Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS (2013a) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol 54(8):1555–1583

    Article  Google Scholar 

  • Kiseeva ES, Yaxley GM, Stepanov AS, Tkalcic H, Litasov KD, Kamenetsky VS (2013b) Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41(8):883–886

    Article  Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77(1–4):639–646

    Article  Google Scholar 

  • Klemme S, O’Neill HSC (1997) The reaction MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contrib Miner Petrol 130(1):59–65

    Article  Google Scholar 

  • Klemme S, O’Neill HSC (2000a) The near-solidus transition from garnet Iherzolite to spinel Iherzolite. Contrib Miner Petrol 138(3):237–248

    Article  Google Scholar 

  • Klemme S, O’Neill HSC (2000b) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contrib Miner Petrol 140(1):84–98

    Article  Google Scholar 

  • Li JP, O’Neill HSC, Seifert F (1995) Subsolidus phase-relations in the system MgO–SiO2–Cr–O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium. J Petrol 36(1):107–132

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150(4):239–263

    Article  Google Scholar 

  • Meyer HOA, Mahin RA (1986) The kimberlites of Guinea, West Africa. Geological Society of Australia, Abstract Series, In Proceedings of 4th international kimberlite conference, vol 16, pp 66–76

  • Moore RO, Gurney JJ (1985) Pyroxene solid-solution in garnets included in diamond. Nature 318(6046):553–555

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1989) Mineral inclusions in diamond from the Monastery kimberlite, South Africa. In Kimberlites and related rocks, Vol 2 (ed. J. Ross et al.), pp. 1029–1041. Proceedings of 4th international kimberlite conference, Perth, 1986. Geol. Soc. Australia Spec. Publ. 14

  • Nishihara Y, Takahashi E (2001) Phase relation and physical properties of an Al-depleted komatiite to 23 GPa. Earth Planet Sci Lett 190(1–2):65–77

    Article  Google Scholar 

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Miner Petrol 77(2):185–194

    Article  Google Scholar 

  • Ohtani E, Kawabe I, Moriyama J, Nagata Y (1989) Partitioning of elements between majorite garnet and melt and implications for petrogenesis of komatiite. Contrib Miner Petr 103:263–269

    Article  Google Scholar 

  • Okamoto K, Maruyama S (2004) The eclogite-gametite transformation in the MORB + H2O system. Phys Earth Planet Inter 146(1–2):283–296

    Article  Google Scholar 

  • Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 degrees C. Phys Earth Planet Inter 96(2–3):171–179

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190(1–2):57–63

    Article  Google Scholar 

  • Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77(1–4):57–67

    Article  Google Scholar 

  • Ringwood AE (1967) Pyroxene-garnet transformation in earths mantle. Earth Planet Sci Lett 2(3):255–263

    Article  Google Scholar 

  • Ringwood AE (1977) Synthesis of pyrope-knorringite solid-solution series. Earth Planet Sci Lett 36(3):443–448

    Article  Google Scholar 

  • Ringwood AE, Major A (1966) High-pressure transformations in pyroxenes. Earth Planet Sci Lett 1(5):351–357

    Article  Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high-pressure garnets and perovskites. Earth Planet Sci Lett 12(4):411–418

    Article  Google Scholar 

  • Roden MF, Patino-Douce AE, Jagoutz E, Laz’ko EE (2006) High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90(1–2):77–91

    Article  Google Scholar 

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472(7342):209–212

    Article  Google Scholar 

  • Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449(7161):456–458

    Article  Google Scholar 

  • Rohrbach A, Ballhaus C, Ulmer P, Golla-Schindler U, Schonbohm D (2011) Experimental evidence for a reduced metal-saturated upper mantle. J Petrol 52(4):717–731

    Article  Google Scholar 

  • Sautter V, Haggerty SE, Field S (1991) Ultradeep (greater-than-300 kilometers) ultramafic xenoliths—petrological evidence from the transition zone. Science 252(5007):827–830

    Article  Google Scholar 

  • Scambelluri M, Pettke T, van Roermund HLM (2008) Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology 36(1):59–62

    Article  Google Scholar 

  • Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71(2–4):195–213

    Article  Google Scholar 

  • Sirotkina EA, Bobrov AV, Bindi L, Irifune T (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1600 degrees C. Contrib Mineral Petrol 169(1)

  • Sobolev NV, Lavrente YG, Pokhilen NP, Usova LV (1973) Chrome-rich garnets from kimberlites of Yakutia and their parageneses. Contrib Mineral Petrol 40(1):39–52

    Article  Google Scholar 

  • Sobolev NV, Yefimova ES, Reimers LF, Zakharchenko OD, Makhin AI, Usova LV (1997) Mineral inclusions in diamonds from the Arkhangelsk kimberlite province. Geol Geofiz 38(2):358–370

    Google Scholar 

  • Sobolev NV, Logvinova AM, Zedgenizov DA, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2004) Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77(1–4):225–242

    Article  Google Scholar 

  • Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Miner 13(5):883–892

    Article  Google Scholar 

  • Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism—evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Miner Petrol 129(2–3):143–154

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32

    Article  Google Scholar 

  • Stewart AJ, van Westrenen W, Schmidt MW, Melekhova E (2006) Effect of gasketing and assembly design: a novel 10/3.5 mm multi-anvil assembly reaching perovskite pressures. High Press Res 26:293–299

    Article  Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnet-perovskite transformation in CaGeO3—in situ X-Ray measurements using synchrotron radiation. Geophys Res Lett 12(10):729–732

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Miner Petrol 150(5):505–522

    Article  Google Scholar 

  • Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Science 529(7584):76–79

    Google Scholar 

  • Ulmer P, Sweeney RJ (2002) Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim Cosmochim Acta 66:2139–2153

    Article  Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386(6625):578–584

    Article  Google Scholar 

  • van Mierlo WL, Langenhorst F, Frost DJ, Rubie DC (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat Geosci 6(5):400–403

    Article  Google Scholar 

  • van Roermund HLM, Drury MR, Barnhoorn A, De Ronde AA (2000) Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (> 6 GPa) origin. J Metamorph Geol 18(2):135–147

    Article  Google Scholar 

  • van Roermund HLM, Drury MR, Barnhoorn A, De Ronde A (2001) Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in western Norway. J Petrol 42(1):117–130

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry: the mantle and core, vol 2. Elsevier, Amsterdam, pp 363–394

    Chapter  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 333(6052):54–57

    Article  Google Scholar 

  • Wang WY, Takahashi E (2000) Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa: its geophysical and geochemical implications. J Geophys Res Solid Earth 105(B2):2855–2868

    Article  Google Scholar 

  • Widiyantoro S, van der Hilst R (1996) Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science 271(5255):1566–1570

    Article  Google Scholar 

  • Wijbrans CH, Niehaus O, Rohrbach A, Pottgen R, Klemme S (2014) Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements. Phys Chem Miner 41(5):341–346

    Article  Google Scholar 

  • Wood BJ, Kiseeva ES, Matzen AK (2013) Garnet in the earth’s mantle. Elements 9(6):421–426

    Article  Google Scholar 

  • Yang JS, Dobrzhinetskaya L, Bai WJ, Fang QS, Rolbinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35(10):875–878

    Article  Google Scholar 

  • Yang JS, Robinson PT, Dilek Y (2014) Diamonds in ophiolites. Elements 10(2):127–130

    Article  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase-relations of an anhydrous midocean ridge basalt from 3 to 20 GPa—implications for the behavior of subducted oceanic-crust in the mantle. J Geophys Res Solid Earth 99(B5):9401–9414

    Article  Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23(1):1–10

    Article  Google Scholar 

  • Zhang RY, Zhai SM, Fei YW, Liou JG (2003) Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth Planet Sci Lett 216(4):591–601

    Article  Google Scholar 

  • Zou YT, Irifune T (2012) Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. J Miner Petrol Sci 107(5):197–205

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks go out to Jasper Berndt, Lukas Martin, Joachim Krause, and Beate Schmitte for their help with the microprobe measurements. Christof Kusebauch and Annette Wijbrans are thanked for their help with the fitting of the data. Christan Liebske and Natalia Stamm are thanked for their help with the multi-anvil experiments at the ETH. Furthermore, our thanks go to Michael Feldhaus, Heinz Heying, Jonas Kemmann, Andreas Boonk, Jürgen Schumacher, Ludger Buxtrup, and Andrew Hardes for their sterling efforts with the Münster multi-anvil apparatus. We would like to thank the editor Mark Ghiorso and two anonymous reviewers for their critical but constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Wijbrans.

Additional information

Communicated by Mark S Ghiorso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijbrans, C.H., Rohrbach, A. & Klemme, S. An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171, 50 (2016). https://doi.org/10.1007/s00410-016-1255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1255-7

Keywords

Navigation