Skip to main content
Log in

Geochemical diversity in submarine HIMU basalts from Austral Islands, French Polynesia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam C, Bonneville A (2008) No thinning of the lithosphere beneath northern part of the Cook-Austral volcanic chains. J Geophys Res 113:B10104. doi:10.1029/2007JB005313

    Article  Google Scholar 

  • Bellon H, Brousse R, Pantaloni A (1980) Age de l’île de Tubuai: l’alignement des Australes et des Cook. Cah Indo-Pac 2:219–240

    Google Scholar 

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Mineral Petrol 145:281–300. doi:10.1007/s00410-003-0452-3

    Article  Google Scholar 

  • Blichert-Toft J, Agranier A, Andres M, Kingsley R, Schilling J-G, Albarède F (2005) Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic. Geochem Geophys Geosyst 6:Q01E19. doi:10.1029/2004GC000788

  • Bonneville A, Le Suavé R, Audin L, Clouard V, Dosso L, Gillot P-Y, Janney P, Jordahl K, Maamaatuaiahutapu K (2002) Arago Seamount: the missing hotspot found in the Austral Islands. Geology 30:1023–1026. doi:10.1130/0091-7613(2002)030<1023:ASTMHF>2.0.CO;2

    Article  Google Scholar 

  • Bonneville A, Dosso L, Hildebrand A (2006) Temporal evolution and geochemical variability of the South Pacific superplume activity. Earth Planet Sci Lett 244:251–269. doi:10.1016/j.epsl.2005.12.037

    Article  Google Scholar 

  • Caroff M, Maury RC, Guille G, Cotten J (1997) Partial melting below Tubuai (Austral Islands, French Polynesia). Contrib Mineral Petrol 127:369–382. doi:10.1007/s004100050286

    Article  Google Scholar 

  • Chaffey DJ, Cliff RA, Wilson BM (1989) Characterization of the St Helena magma source. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Geological Society Special Publication, vol 42, London, pp 257–276

  • Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM: the French Polynesian connection. Earth Planet Sci Lett 110:99–119. doi:10.1016/0012-821X(92)90042-T

    Article  Google Scholar 

  • Chauvel C, McDonough W, Guille G, Maury R, Duncan R (1997) Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem Geol 139:125–143. doi:10.1016/S0009-2541(97)00029-6

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2008) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64–67. doi:10.1038/ngeo.2007.51

    Article  Google Scholar 

  • Corgne A, Liebske C, Wood BJ, Rubie D, Frost DJ (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim Cosmochim Acta 69:485–496. doi:10.1016/j.gca.2004.06.041

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308. doi:10.1016/S0012-821X(02)01048-8

    Article  Google Scholar 

  • Dalou C, Koga KT, Hammouda T, Poitrasson F (2009) Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites. Geochim Cosmochim Acta 73:239–255. doi:10.1016/j.gca.2008.09.020

    Article  Google Scholar 

  • Dalrymple GB, Jarrard RD, Clague DA (1975) K-Ar ages of some volcanic rocks from the Cook and Austral Islands. Geol Soc Am Bull 86:1463–1467. doi:10.1130/0016-7606(1975)86<1463:KAOSVR>2.0.CO;2

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85. doi:10.1016/j.epsl.2004.08.004

    Article  Google Scholar 

  • Davaille A, Girard F, Le Bas M (2002) How to anchor hotspots in a convecting mantle? Earth Planet Sci Lett 203:621–634. doi:10.1016/S0012-821X(02)00897-X

    Article  Google Scholar 

  • Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo J-C (2009) Pyroxene-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary Island lavas. Geology 37:555–558. doi:10.1130/G25613A.1

    Article  Google Scholar 

  • Duncan RA, McDougall I (1976) Linear volcanism in French Polynesia. J Vol Geotherm Res 1:197–227. doi:10.1016/0377-0273(76)90008-1

    Article  Google Scholar 

  • Dupuy C, Barsczus HG, Liotard JM, Dostal J (1988) Trace element evidence for the origin of ocean island basalts: an example from the Austral Islands (French Polynesia). Contrib Mineral Petrol 98:293–302. doi:10.1007/BF00375180

    Article  Google Scholar 

  • Dupuy C, Barsczus HG, Dostal J, Vidal P, Liotard JM (1989) Subducted and recycled lithosphere as the mantle source of ocean island basalts from southern Polynesia, central Pacific. Chem Geol 77:1–18. http://dx.doi.org/10.1016/0009-2541(89)90010-7

  • Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G (2010) Melting of peridotite to 140 gigapascals. Science 329:1516–1518. doi:10.1126/science.1192448

    Article  Google Scholar 

  • Fodor RV, Dobosi G, Bauer GR (1992) Anomalously high rare-earth element abundances in Hawaiian lavas. Anal Chem 64:A639–A643. doi:10.1021/ac00035a002

    Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524. doi:10.1016/j.epsl.2008.11.013

    Article  Google Scholar 

  • Hamelin C, Dosso L, Hanan BB, Moreira M, Kositsky AP, Thomas MY (2011) Geochemical portray of the Pacific Ridge: new isotopic data and statistical techniques. Earth Planet Sci Lett 302:154–162. doi:10.1016/j.epsl.2010.12.007

    Article  Google Scholar 

  • Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995. doi:10.1126/science.272.5264.991

    Article  Google Scholar 

  • Hanan BB, Blichert-Toft J, Kingsley R, Schilling J-G (2000) Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? Geochem Geophys Geosyst 1:1003. doi:10.1029/1999GC000009

    Article  Google Scholar 

  • Hanyu T, Nakamura E (2000) Constraints on HIMU and EM by Sr and Nd isotopes re-examined. Earth Planets Space 52:61–70

    Google Scholar 

  • Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Kawabata H, Suzuki K, Kimura J-I (2011a) Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochem Geophys Geosyst 12:Q0AC09. doi:10.1029/2010GC003252

  • Hanyu T, Tatsumi Y, Kimura J-I (2011b) Constraints on the origin of the HIMU reservoir from He-Ne-Ar isotope systematics. Earth Planet Sci Lett 307:377–386. doi:10.1016/j.epsl.2011.05.012

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757. doi:10.1038/309753a0

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520. doi:10.1126/science.256.5056.517

    Article  Google Scholar 

  • Hémond C, Devey CW, Chauvel C (1994) Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem Geol 115:7–45. doi:10.1016/0009-2541(94)90143-0

    Article  Google Scholar 

  • Hirose K, Fei Y (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108. doi:10.1016/S0016-7037(02)00847-5

    Article  Google Scholar 

  • Hirose K, Shimizu N, Van Westrenen W, Fei Y (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core–mantle boundary. Phys Earth Planet Inter 146:249–260. doi:10.1016/j.pepi.2002.11.001

    Article  Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schonberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542. doi:10.1007/s004100100308

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229. doi:10.1038/385219a0

    Article  Google Scholar 

  • Jackson MG, Hart SR, Shimizu N, Blusztajn JS (2009) The 87Sr/86Sr and 143Nd/144Nd disequilibrium between Polynesian hot spot lavas and the clinopyroxenes they host: evidence complementing isotopic disequilibrium in melt inclusions. Geochem Geophys Geosyst 10:Q03006. doi:10.1029/2008GC002324

    Article  Google Scholar 

  • Janney PE, Macdougall JD, Natland JH, Lynch MA (2000) Geochemical evidence from the Pukapuka volcanic ridge system for a shallow enriched mantle domain beneath the South Pacific Superswell. Earth Planet Sci Lett 181:47–60. doi:10.1016/S0012-821X(00)00181-3

    Article  Google Scholar 

  • Kawabata H, Hanyu T, Chang Q, Kimura J-I, Nichols ARL, Tatsumi Y (2011) The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. J Petrol 52:791–838. doi:10.1093/petrology/egr003

    Article  Google Scholar 

  • Kingsley RH, Blichert-Toft J, Fontignie D, Schilling J-G (2007) Hafnium, neodymium, and strontium isotope and parent-daughter element systematics in basalts from the plume-ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem Geophys Geosyst 8:Q04005. doi:10.1029/2006GC001401

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249(3–4):188–199. doi:10.1016/j.epsl.2006.07.016

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Shimoda G, Barsczus HG (1997) High μ (HIMU) ocean island basalts in southern Polynesia: new evidence for whole mantle scale recycling of subducted oceanic crust. J Geophys Res 102:8085–8103. doi:10.1029/96JB03892

    Article  Google Scholar 

  • Larson RL (1991) Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19:547–550. doi:10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2

    Article  Google Scholar 

  • Lassiter JC, Blichert-Toft J, Hauri EH, Barsczus HG (2003) Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chem Geol 202:115–138. doi:10.1016/j.chemgeo.2003.08.002

    Article  Google Scholar 

  • Maury RC, Azzouzi ME, Bellon H, Liotard J-M, Guille G, Barsczus HG, Chauvel C, Diraison C, Dupuy C, Vidal P, Brousse R (1994) Géologie et pétrology de l’île de Tubuai (Australes, Polynésie française). Comp Rend Acad Sci, Ser II 318:1341–1347

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McNutt MK, Judge AV (1990) The superswell and mantle dynamics beneath the south. Pac Sci 248:969–975. doi:10.1126/science.248.4958.969

    Google Scholar 

  • Millet M-A, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Vol Geotherm Res 176:265–276. doi:10.1016/j.volgeores.2008.04.003

    Article  Google Scholar 

  • Nakamura Y, Tatsumoto M (1988) Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes. Geochim Cosmochim Acta 52:2909–2924. doi:10.1016/0016-7037(88)90157-3

    Article  Google Scholar 

  • Nobre Silva IG, Weis D, Barling J, Scoates S (2009) Leaching systematics and matrix elimination for the determination of high-precision Pb isotope compositions of ocean island basalts. Geochem Geophys Geosyst 10:Q08012. doi:10.1029/2009GC002537

    Article  Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269. doi:10.1016/j.pepi.2003.09.015

    Article  Google Scholar 

  • Ono S (2008) Experimental constraints on the temperature profile in the lower mantle. Phys Earth Planet Inter 170:267–273. doi:10.1016/j.pepi.2008.06.033

    Article  Google Scholar 

  • Pearce JA, Kempton PD, Gill JB (2007) Hf–Nd evidence for the origin and distribution of mantle domains in the SW Pacific. Earth Planet Sci Lett 260:98–114. doi:10.1016/j.epsl.2007.05.023

    Article  Google Scholar 

  • Saal AE, Hart SR, Shimizu N, Hauri EH, Layne GD (1998) Pb Isotopic variability in melt Inclusions from oceanic island basalts, Polynesia. Science 282:1481–1484. doi:10.1126/science.282.5393.1481

    Article  Google Scholar 

  • Saal AE, Hart SR, Shimizu N, Hauri EH, Layne GD, Eiler JM (2005) Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere. Earth Planet Sci Lett 240:605–650. doi:10.1016/j.epsl.2005.10.002

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05004. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145:447–460. doi:10.1016/S0009-2541(97)00154-X

    Article  Google Scholar 

  • Salters VJM, Mallick S, Hart SR, Langmuir CE, Stracke A (2011) Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochem Geophys Geosyst 12:Q08001. doi:10.1029/2011GC003617

    Google Scholar 

  • Schiano P, Burton KW, Dupré B, Birck J-L, Guille G, Allègre CJ (2001) Correlated Os–Pb–Nd–Sr isotopes in the Austral–Cook chain basalts: the nature of mantle components in plume sources. Earth Planet Sci Lett 186:527–537. doi:10.1016/S0012-821X(01)00265-5

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin D, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi:10.1126/science.1138113

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:8003. doi:10.1029/2001GC000223

    Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007. doi:10.1029/2004GC000824

    Article  Google Scholar 

  • Tanaka S, Obayashi M, Suetsugu D, Shiobara H, Sugioka H, Yoshimitsu J, Kanazawa T, Fukao Y, Barruol G (2009) P-wave tomography of the mantle beneath the South Pacific Superswell revealed by joint ocean floor and islands broadband seismic experiments. Phys Earth Planet Inter 172:268–277. doi:10.1016/j.pepi.2008.10.016

    Article  Google Scholar 

  • Tilling RI, Dvorak JJ (1993) Anatomy of a basaltic volcano. Nature 363:125–133

    Article  Google Scholar 

  • Turner DL, Jarrard RD (1982) K-Ar dating of the cook-austral island chain: a test of the hot-spot hypothesis. J Vol Geotherm Res 12:187–220. doi:10.1016/0377-0273(82)90027-0

    Article  Google Scholar 

  • Verma SP (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochem J 26:159–177

    Article  Google Scholar 

  • Vidal P, Chauvel C, Brousse R (1984) Large mantle heterogeneity beneath French Polynesia. Nature 307:536–538. doi:10.1038/307536a0

    Article  Google Scholar 

  • Walter MJ, Nakamura E, Trønnes RG, Frost DJ (2004) Experimental constraints on crystallization differentiation in a deep magma ocean. Geochim Cosmochim Acta 68:4267–4284. doi:10.1016/j.gca.2004.03.014

    Article  Google Scholar 

  • Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD, Gudfinnsson G, Lord OT, Lennie AR, Clark SM, Smith CB, Gobbo L (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:622–625. doi:10.1038/nature07132

    Article  Google Scholar 

  • Weaver B (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397. doi:10.1016/0012-821X(91)90217-6

    Article  Google Scholar 

  • White W, Hofmann AW, Puchelt H (1987) Isotope geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res 92:4881–4893. doi:10.1029/JB092iB06p04881

    Article  Google Scholar 

  • Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst 7:Q04004. doi:10.1029/2005GC001005

    Article  Google Scholar 

  • Woodhead JD (1996) Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook: Austral hotspot. J Vol Geotherm Res 72:1–19. doi:10.1016/0377-0273(96)00002-9

    Article  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 Gpa: implications for the behaviour of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414. doi:10.1029/93JB03205

    Article  Google Scholar 

  • Yurimoto H, Kogiso T, Abe K, Barsczus HG, Utsunomiya A, Maruyama S (2004) Lead isotopic compositions in olivine-hosted melt inclusions from HIMU basalts and possible link to sulfide components. Phys Earth Planet Inter 146:231–242. doi:10.1016/j.pepi.2003.08.013

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571. doi:10.1146/annurev.ea.14.050186.002425

    Article  Google Scholar 

Download references

Acknowledgments

We thank the crew and marine technicians on the R/V Yokosuka and the operation teams of the submersible Shinkai 6500 of the JAMSTEC Polynesian cruise in 2006. A. Bonneville and D. Suetsugu are acknowledged for their support and encouragement in conducting the research cruise. We thank M. Narui and M. Yamazaki at the International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, for providing opportunities for neutron irradiation of samples at the JRR3 reactor. The SDSU geochemistry labs acknowledge support from the Keck Foundation and the National Science Foundation. We are grateful to J.-I. Kimura and A. R. L. Nichols for their constructive comments. We would also like to thank two anonymous reviewers and Editor T. L. Grove for their thoughtful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hanyu.

Additional information

Communicated by T L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 80 kb)

Supplementary material 2 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyu, T., Dosso, L., Ishizuka, O. et al. Geochemical diversity in submarine HIMU basalts from Austral Islands, French Polynesia. Contrib Mineral Petrol 166, 1285–1304 (2013). https://doi.org/10.1007/s00410-013-0926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0926-x

Keywords

Navigation