Skip to main content

Advertisement

Log in

Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: implication for post-UHPM crustal melting during exhumation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Migmatites are widespread in the North Dabie ultrahigh-pressure metamorphic terrane (NDT) of Dabie orogen, East China. Idiomorphic and poikilitic amphibole grains in both leucosome and melanosome contain inclusions of plagioclase, quartz and biotite, suggesting formation of leucosome by fluid-present melting of biotite + plagioclase + quartz-bearing protoliths at P = 5–7 kbar, T = 700–800 °C. Precise SIMS zircon U–Pb dating indicates that migmatization of Dabie orogen initiated at ~140 Ma and lasted for ~10 Ma, coeval with the formation of low-Mg# adakitic intrusions in Dabie orogen. Based on mineralogical, petrographic and geochemical data, leucosomes in NDT can be subdivided into three groups. (1) High La/Yb(N)–Medium Sr/Y group (Group I), whose high Dy/Yb(N) but medium Sr/Y ratios are caused by amphibole and plagioclase residual during partial melting of dioritic to granodioritic gneisses. (2) Low La/Yb(N)–Low Sr/Y group (Group II), whose flat HREE patterns are produced by entrainment of peritectic amphiboles into melts derived from partial melting of dioritic gneiss. (3) High La/Yb(N)–High Sr/Y and Eu# group (Group III), whose extremely high Sr and Eu but low other REE concentrations are caused by accumulation of plagioclase and quartz. Although Group I and III fall in the adakitic fields on La/Yb(N)–Yb(N) and Sr/Y–Y diagrams, they are chemically distinct from contemporary high-pressure adakitic intrusions in Dabie orogen in a series of geochemical indexes, for example, lower Dy/Yb(N) and/or Sr/Y ratios at given La/Yb(N) ratio, lower Sr/CaO ratios, lower Rb concentration but higher K/Rb ratios. Therefore, leucosomes are produced by anatexis of the exhumed ultrahigh-pressure metamorphic rocks at middle crustal level, instead of partial melting of thickened lower crust with garnet-rich and plagioclase-poor residual. The coeval occurrence of migmatites and high-pressure adakitic intrusions in Dabie orogen indicates large-scale partial melting of middle to thickened lower crustal column in the early Cretaceous. The required heat source may be the mantle heat conducting through the lithospheric mantle whose lower parts have been convectively removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ayers JC, Dunkle S, Gao S, Miller CF (2002) Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U–Th–Pb dating of zircon and monazite. Chem Geol 186:315–331

    Article  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Developments in Petrology, vol 6. Elsevier, Amsterdam, pp 1–12

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bea F (2012) The source of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153:278–291

    Article  Google Scholar 

  • Bergantz GW (1989) Underplating and partial melting: implications for melt generation and extraction. Science 245:1093–1095

    Article  Google Scholar 

  • Brown M (2007) Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. J Geol Soc 164:709–730

    Article  Google Scholar 

  • Brown M (2008) Granites, migmatites and residual granulites: relationships and processes. Work Migmatites Miner Assoc Can Short Course Ser 38:97–144

    Google Scholar 

  • Bryant DL, Ayers JC, Gao S, Miller CF, Zhang H (2004) Geochemical, age, and isotopic constraints on the location of the Sino–Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geol Soc Am Bull 116:698–717

    Article  Google Scholar 

  • Burda J, Gaweda A (2009) Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110:373–385

    Article  Google Scholar 

  • Büsch W, Schneider G, Mehnert K (1974) Initial melting at grain boundaries. Part II: melting in rocks of granodioritic, quartzdioritic and tonalitic composition. Neues Jahrb Mineral Monatsh 8:345–370

    Google Scholar 

  • Castillo PR (2006) An overview of adakite petrogenesis. Chin Sci Bull 51:257–268

    Article  Google Scholar 

  • Chamberlain CP, Sonder LJ (1990) Heat-producing elements and the thermal and baric patterns of metamorphic belts. Scinece 250:763–769

    Article  Google Scholar 

  • Chen B, Jahn B, Arakawa Y, Zhai M (2004) Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: elemental and Sr–Nd–Pb isotopic constraints. Contrib Miner Petrol 148:489–501

    Article  Google Scholar 

  • Chen DL, Liu L, Sun Y, Sun WD, Zhu XH, Liu XM, Guo CL (2012) Felsic veins within UHP eclogite at xitieshan in North Qaidam, NW China: partial melting during exhumation. Lithos 136–139:187–200

    Article  Google Scholar 

  • Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Clark C, Fitzsimons ICW, Healy D, Harley SL (2011) How does the continental crust get really hot? Elements 7:235–240

    Article  Google Scholar 

  • Clemens J (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331

  • Clemens J, Droop G (1998) Fluids, PT paths and the fates of anatectic melts in the Earth’s crust. Lithos 44:21–36

    Article  Google Scholar 

  • Cruciani G, Franceschelli M, Jung S, Puxeddu M, Utzeri D (2008) Amphibole-bearing migmatites from the Variscan Belt of NE Sardinia, Italy: partial melting of mid-Ordovician igneous sources. Lithos 105:208–224

    Article  Google Scholar 

  • Dai LQ, Zhao ZF, Zheng YF, Li Q, Yang Y, Dai M (2011) Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett 308:229–244

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Dewey J (1988) Extensional collapse of orogens. Tectonics 7:1123–1139

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Faure M, Lin W, Schärer U, Shu L, Sun Y, Arnaud N (2003) Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos 70:213–241

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Gardien V, Thompson AB, Ulmer P (2000) Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. J Petrol 41:651–666

    Article  Google Scholar 

  • Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc 157:577–587

    Article  Google Scholar 

  • Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D, Shuwen D (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth Planet Sci Lett 161:215–230

    Article  Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminum in hornblende; an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • He LJ, Hu SB, Yang WC, Wang JY (2009) Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth Planet Sci Lett 277:525–538

    Article  Google Scholar 

  • He YS, Li SG, Hoefs J, Huang F, Liu SA, Hou Z (2011) Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta 75:3815–3838

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Miner Petrol 116:433–447

    Article  Google Scholar 

  • Huang F, Li SG, Dong F, Li Q, Chen F, Wang Y, Yang W (2007) Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos 96:151–169

    Article  Google Scholar 

  • Huang F, Li SG, Dong F, He Y, Chen F (2008) High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust. Chem Geol 255:1–13

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Huw Davies J, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Jian P, Kröner A, Zhou G (2012) SHRIMP zircon U–Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chem Geol 328:49–69

    Article  Google Scholar 

  • Jiang N, Liu YS, Zhou WG, Yang JH, Zhang SQ (2007) Derivation of mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta 71:2591–2608

    Article  Google Scholar 

  • Kamei A, Miyake Y, Owada M, Kimura JI (2009) A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos 112:615–625

    Article  Google Scholar 

  • Li SG, Xiao Y, Liou D, Chen Y, Ge N, Zhang Z, Sun S, Cong B, Zhang R, Hart SR (1993) Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: timing and processes. Chem Geol 109:89–111

    Article  Google Scholar 

  • Li SG, Hong J, Li H, Jiang L (1999) U–Pb zircon ages of the pyroxenite-gabbro intrusions in Dabie Mountains and their geological implications. Geol J China Univ 5:351–355

    Google Scholar 

  • Li SG, Jagoutz E, Chen Y, Li Q (2000) Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim Cosmochim Acta 64:1077–1093

    Article  Google Scholar 

  • Li SG, Huang F, Nie YH, Han WL, Long G, Li HM, Zhang SQ, Zhang ZH (2001) Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie Orogen, Central China. Phys Chem Earth Part A 26:655–672

    Article  Google Scholar 

  • Li X, Li ZX, Zhou H, Liu Y, Kinny PD (2002) U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambr Res 113:135–154

    Article  Google Scholar 

  • Li QL, Li SG, Zheng YF, Li H, Massonne HJ, Wang Q (2003a) A high precision U–Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chem Geol 200:255–265

    Article  Google Scholar 

  • Li SG, Huang F, Zhou H, Li H (2003b) U–Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China: constraint on the exhumation mechanism of UHPM rocks. Sci China Ser D Earth Sci 46:200–209

    Article  Google Scholar 

  • Li XP, Zheng YF, Wu YB, Chen F, Gong B, Li YL (2004) Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contrib Miner Petrol 148:443–470

    Article  Google Scholar 

  • Li R, Wan Y, Cheng Z, Zhou J, Li S, Jin F, Meng Q, Li Z, Jiang M (2005a) Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth Planet Sci Lett 231:279–294

    Article  Google Scholar 

  • Li SG, Li Q, Hou Z, Yang W, Wang Y (2005b) Colling histroy and exhumation mechanism of the ultrahigh-pressure metarmophic rocks in the Dabie Moutains, central China. Acta Petrol Sin 21:1117–1124

    Google Scholar 

  • Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophys Geosyst 10:Q04010

    Google Scholar 

  • Li QL, Li XH, Liu Y, Tang GQ, Yang JH, Zhu WG (2010) Precise U–Pb and Pb–Pb dating of phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom 25:1107–1113

    Article  Google Scholar 

  • Liu YC, Xu ST, Jiang LL, Chen GB, Wu W, Su W (1999) Petrologic geochemical characteristics and Paleo-tectonic significance of the inter-mediate-acid gneisses from the metamorphosed mafic-ultramafic belt in the northern Dabie mountains. Geotecton Metallogen 81:222–229

    Google Scholar 

  • Liu YC, Li SG, Xu S, Jahn B, Zheng YF, Zhang Z, Jiang L, Chen G, Wu W (2005) Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. J Asian Earth Sci 25:431–443

    Article  Google Scholar 

  • Liu G, Zhu G, Niu M, Song C, Wang D (2006) Meso-cenozoic evolution of the Hefei basin (eastern part) and its response to activities of the Tan-Lu fault zone. Chin J Geol 41:256–269

    Google Scholar 

  • Liu YC, Li SG, Gu XF, Xu ST, Chen GB (2007a) Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east central China. J Metamorph Geol 25:975–989

    Article  Google Scholar 

  • Liu YC, Li SG, Xu ST (2007b) Zircon SHRIMP U–Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: implications for decoupling within subducted continental crust. Lithos 96:170–185

    Article  Google Scholar 

  • Liu YC, Gu XF, Li SG, Hou ZH, Song B (2010) Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: evidence from zircon U–Pb age, trace element and mineral inclusion. Lithos 122:107–121

    Article  Google Scholar 

  • Ludwig K (2001). User’s manual for Isoplot. Ex rev 2

  • Ma C, Yang K, Ming H, Lin G (2004) The timing of tectonic transition from compression to extension in Dabieshan: evidence from Mesozoic granites. Sci China Ser D Earth Sci 47:453–462

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, Compagnoni R (2006) Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos 90:19–42

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Marchildon N, Brown M (2003) Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale. Tectonophysics 364:215–235

    Google Scholar 

  • McKenzie D, Priestley K (2008) The influence of lithospheric thickness variations on continental evolution. Lithos 102:1–11

    Article  Google Scholar 

  • Milord I, Sawyer E, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France. J Petrol 42:487–505

    Article  Google Scholar 

  • Molnar P, Houseman G, Conrad C (1998) Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int 133:568–584

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112:556–574

    Article  Google Scholar 

  • Moyen JF, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  • Naney M (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033

    Article  Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:687–710

    Article  Google Scholar 

  • Peterson JW, Newton RC (1989) Reversed experiments on biotite-quartz-feldspar melting in the system KMASH: implications for crustal anatexis. J Geol 97:465–485

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Reichardt H, Weinberg RF (2012) Hornblende chemistry in meta- and diatexites and its retention in the source of leucogranites: an example from the Karakoram Shear Zone, NW India. J Petrol 53:1287–1318

    Article  Google Scholar 

  • Reno BL, Piccoli PM, Brown M, Trouw RAJ (2012) In situ monazite (U–Th)–Pb ages from the Southern Brasilia Belt, Brazil: constraints on the high-temperature retrograde evolution of HP granulites. J Metamorph Geol 30:81–112

    Article  Google Scholar 

  • Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449

    Article  Google Scholar 

  • Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473

    Article  Google Scholar 

  • Sawyer EW (2008) Working with migmatites: nomenclature for the constituent parts. Work Migmatites Mineral Assoc Can Short Course Ser 38:1–28

    Google Scholar 

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110:304–310

    Article  Google Scholar 

  • Slagstad T, Hamilton MA, Jamieson RA, Culshaw NG (2004) Timing and duration of melting in the mid orogenic crust: constraints from U–Pb (SHRIMP) data, Muskoka and Shawanaga domains, Grenville Province, Ontario. Can J Earth Sci 41:1339–1365

    Article  Google Scholar 

  • Slagstad T, Jamieson R, Culshaw N (2005) Formation, crystallization, and migration of melt in the mid-orogenic crust: muskoka domain migmatites, Grenville Province, Ontario. J Petrol 46:893–919

    Article  Google Scholar 

  • Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823

    Article  Google Scholar 

  • Stacey JS, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stevens G, Clemens J (1993) Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem Geol 108:1–17

    Article  Google Scholar 

  • Stevenson JA, Daczko NR, Clarke GL, Pearson N, Klepeis KA (2005) Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand. Terra Nova 17:73–79

    Article  Google Scholar 

  • Sun W, Li S, Chen Y, Li Y (2002) Timing of synorogenic granitoids in the South Qinling, Central China: constraints on the evolution of the Qinling-Dabie orogenic Belt. J Geol 110:457–468

    Article  Google Scholar 

  • Sun M, Chen N, Zhao G, Wilde SA, Ye K, Guo J, Chen Y, Yuan C (2008) U–Pb Zircon and Sm–Nd isotopic study of the huangtuling granulite, Dabie-Sulu belt, China: implication for the paleoproterozoic tectonic history of the yangtze craton. Am J Sci 308:469–483

    Article  Google Scholar 

  • Tsai CH, Liou JG (2000) Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. Am Mineral 85:1–8

    Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Article  Google Scholar 

  • Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134

    Article  Google Scholar 

  • Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472

    Article  Google Scholar 

  • Wang J, Deng S (2002) Emplacement age for the mafic-ultramafic plutons in the northern Dabie Mts. (Hubei): zircon U–Pb, Sm–Nd and 40Ar/39Ar dating. Sci China, Ser D Earth Sci 45:1–12

    Google Scholar 

  • Wang JH, Sun M, Deng SX (2002) Geochronological constraints on the timing of migmatization in the Dabie Shan, East-central China. Eur J Mineral 14:513–524

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu J, Jian P, Zhao Z, Li C, Xu W, Ma J, He B (2007) Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636

    Article  Google Scholar 

  • Wang Y, Xiang B, Zhu G, Jiang D (2011) Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. J Struct Geol 33:362–380

    Article  Google Scholar 

  • Wang SJ, Li SG, An SC, Hou ZH (2012) A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals. Lithos 136–139:109–125

    Article  Google Scholar 

  • Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY, Liu XM (2007) Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. J Metamorph Geol 25:991–1009

    Article  Google Scholar 

  • Wu YB, Zheng YF, Gao S, Jiao WF, Liu YS (2008) Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 101:308–322

    Article  Google Scholar 

  • Xiao L, Clemens J (2007) Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos 95:399–414

    Article  Google Scholar 

  • Xie Z, Chen JF, Cui YR (2010) Episodic growth of zircon in UHP orthogneisses from the North Dabie Terrane of east-central China: implications for crustal architecture of a collisional orogen. J Metamorph Geol 28:979–995

    Article  Google Scholar 

  • Xu S, Liu Y, Su W, Wang R, Jiang L, Wu W (2000) Discovery of the eclogite and its petrography in the Northern Dabie Mountain. Chin Sci Bull 45:273–278

    Article  Google Scholar 

  • Xu S, Liu Y, Chen G, Compagnoni R, Rolfo F, He M, Liu H (2003) New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chin Sci Bull 48:988–994

    Google Scholar 

  • Xu H, Ma C, Ye K (2007) Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: sHRIMP zircon U–Pb dating and geochemistry. Chem Geol 240:238–259

    Article  Google Scholar 

  • Yu S, Zhang J, Del Real PG (2012) Geochemistry and zircon U–Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Res 21:167–179

    Article  Google Scholar 

  • Yuan X, Klemperer S, Teng W, Liu L, Chetwin E (2003) Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology 31:435–438

    Article  Google Scholar 

  • Zhai MG, Cong BL, Zhang Q, Wang QC (1994) The northern Dabieshan terrain: a possible Andean-type arc. Int Geol Rev 36:867–883

    Article  Google Scholar 

  • Zhang R, Liou J, Tsai C (1996) Petrogenesis of a high-temperature metamorphic terrane: a new tectonic interpretation for the north Dabieshan, central China. J Metamorph Geol 14:319–333

    Article  Google Scholar 

  • Zhang SB, Zheng YF, Zhao ZF, Wu YB, Yuan H, Wu FY (2009) Origin of TTG-like rocks from anatexis of ancient lower crust: geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113:347–368

    Article  Google Scholar 

  • Zhao ZF, Zheng YF, Wei CS, Wu YB, Chen F, Jahn B (2005) Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83:1–28

    Article  Google Scholar 

  • Zhao ZF, Zheng YF, Wei CS, Wu YB (2007) Post-collisional granitoids from the Dabie orogen in China: zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93:248–272

    Article  Google Scholar 

  • Zhao ZF, Zheng YF, Wei CS, Chen FK, Liu X, Wu FY (2008) Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chem Geol 253:222–242

    Article  Google Scholar 

  • Zhao ZF, Zheng YF, Wei CS, Wu FY (2011) Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust-mantle interaction and crustal architecture. Lithos. doi:10.1016/j.lithos.2011.06.010

    Google Scholar 

  • Zheng XS, Jin CW, Zhai MG, Shi YH (1999) Petrochemistry and tectonic background of the gray gneisses in north Dabie terrane. Acta Petrol Sin 15:350–358

    Google Scholar 

  • Zheng YF, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev 62:105–161

    Article  Google Scholar 

  • Zhu G, Liu GS, Niu ML, Xie CL, Wang YS, Xiang B (2009) Syn-collisional transform faulting of the Tan-Lu fault zone, East China. Int J Earth Sci 98:135–155

    Article  Google Scholar 

Download references

Acknowledgments

Xianhua Li, Qiuli Li, Yu Liu, and Guoqiang Tang are thanked for their assistance with Cameca 1280 zircon U–Pb dating. Discussions with Dr. Fang-Zhen Teng helped to improve an early version of the manuscript. Constructive comments from Michael Brown and an anonymous reviewer are greatly appreciated. This study was supported by funds from the State Key Basic Research Development Program (Grant No. 2009CB825002) and the National Nature Science Foundation of China (No. 40973016, 40921002, and 91014007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shui-Jiong Wang or Shu-Guang Li.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SJ., Li, SG., Chen, LJ. et al. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: implication for post-UHPM crustal melting during exhumation. Contrib Mineral Petrol 165, 1009–1029 (2013). https://doi.org/10.1007/s00410-012-0845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0845-2

Keywords

Navigation