Skip to main content
Log in

Origin of Meso-Proterozoic post-collisional leucogranite suites (Kaokoveld, Namibia): constraints from geochronology and Nd, Sr, Hf, and Pb isotopes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Leucocratic granites of the Proterozoic Kaoko Belt, northern Namibia, now preserved as meta-granites, define a rock suite that is distinct from the surrounding granitoids based on their chemical and isotopic characteristics. Least evolved members of this ~1.5–1.6-Ga-old leucogranite suite can be distinguished from ordinary calc-alkaline granites that occur elsewhere in the Kaoko Belt by higher abundances of Zr, Y, and REE, more radiogenic initial εNd values and unradiogenic initial 87Sr/86Sr. The leucogranites have high calculated zircon saturation temperatures (mostly > 920°C for least fractionated samples), suggesting that they represent high-temperature melts originating from deep crustal levels. Isotope data (i.e., εNdi: +2.3 to –4.2) demonstrate that the granites formed from different sources and differentiated by a variety of processes including partial melting of mantle-derived meta-igneous rocks followed by crystal fractionation and interaction with older crustal material. Most fractionation-corrected Nd model ages (TDM) are between 1.7 and 1.8 Ga and only slightly older than the inferred intrusion age of ca. 1.6 Ga, indicating that the precursor rocks must have been dominated by juvenile material. Epsilon Hf values of zircon separated from two granite samples are positive (+11 and +13), and Hf model ages (1.5 and 1.6 Ga) are similar to the U–Pb zircon ages, again supporting the dominance of juvenile material. In contrast, the Hf model ages of the respective whole rock samples are 2.3 and 2.4 Ga, demonstrating the involvement of older material in the generation of the granites. The last major tectonothermal event in the Kaoko Belt in the Proterozoic occurred at ca. 2.0 Ga and led to reworking of mostly 2.6-Ga-old rocks. However, the presence of 1.6 Ga “post-collisional” granites reflects addition of some juvenile mantle-derived material after the last major tectonic event. The results suggest that similar A-type leucogranites are potentially more abundant in crustal terranes but are masked by AFC processes. In the case of the Kaoko Belt, it is suggested that this rock suite indicates a yet unidentified period of mantle-derived crustal growth in the Proterozoic of South Western Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ayuso RA, Bevier ML (1991) Regional differences in Pb isotopic compositions of feldspars in plutonic rocks of the northern Appalachian mountains, USA and Canada: a geochemical method of terrane correlation. Tectonics 10:191–212

    Article  Google Scholar 

  • Barfod GH, Krogstad EJ, Frei R, Albarède F (2005) Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu-Hf isotopic closure in metamorphic apatite. Geochim Cosmochim Acta 69:1847–1859

    Article  Google Scholar 

  • Ben Othman D, Fourcade S, Allègre CJ (1984) Recycling processes in granite-granodiorite complex genesis: the Quérigut case studied by Nd-Sr isotope systematics. Earth Planet Sci Lett 69:290–300

    Article  Google Scholar 

  • Bennett VC, DePaolo DJ (1987) Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geol Soc Am Bull 99:674–685

    Article  Google Scholar 

  • Bernard-Griffiths J, Peucat JJ, Sheppard S, Vidal P (1985) Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb, O) geochemical data to the study of source rock characteristics and ages. Earth Planet Sci Lett 74:235–250

    Article  Google Scholar 

  • Bleiner D, Günther D (2001) Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 16:449–456

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarède F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Mineral Petrol 127:248–260

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of rare earth elements: Meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, New York, pp 63–114

    Google Scholar 

  • Brandt S, Will TM, Klemd R (2007) Ultrahigh-temperature metamorphism and anticlockwise PT paths of sapphirine-bearing orthopyroxene-sillimanite gneisses from the Proterozoic Epupa Complex, NW Namibia. Prec Res 153:143–178

    Article  Google Scholar 

  • Cameron AE, Smith DH, Walker RL (1969) Mass spectrometry of nanogram-size samples of lead. Anal Chem 41:525–526

    Article  Google Scholar 

  • Chauvel C, Arndt NT, Keilinzcuk S, Thom A (1987) Formation of Canadian 1.9 Ga old continental crust. 1. Nd isotope data. Can J Earth Sci 24:396–406

    Article  Google Scholar 

  • Crawford MB, Windley BF (1990) Leucogranites of the Himalaya/Karakoam: implications for magmatic evolution within collisional belts and the study of collision-related leucogranite petrogenesis. J Volc Geotherm Res 44:1–19

    Article  Google Scholar 

  • Deniel C, Vidal P, Fernadez A, LeFort P, Peucat J-J (1987) Isotopic study of the Manaslu granite (Himalaya; Nepal): inferences on the age and source of Himalayan leucogranites. Contrib Mineral Petrol 96:78–92

    Article  Google Scholar 

  • DePaolo DJ (1981a) Neodymium isotopes in the Colorado front range and crust-mantle evolution in the Proterozoic. Nature 291:193–196

    Article  Google Scholar 

  • DePaolo DJ (1981b) A neodymium and strontium study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsula Ranges, California. J Geophys Res 86:10470–10488

    Article  Google Scholar 

  • DePaolo DJ (1981c) Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    Article  Google Scholar 

  • Dietrich V, Gansser A (1981) The leucogranites of the Bhutan Himalaya (crustal anatexis versus mantle melting). Schweiz Miner Petrogr Mitt 61:177–202

    Google Scholar 

  • Dorais MJ, Paige ML (2000) Regional geochemical and isotopic variations of northern New England plutons: implications for magma sources and for Grenville and Avalon basement-terrane boundaries. Geol Soc Am Bull 112:900–914

    Article  Google Scholar 

  • Drüppel K, Littmann S, Romer RL, Okrusch M (2007) Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Prec Res 156:1–31

    Article  Google Scholar 

  • Dürr SB, Dingeldey DP (1996) The Kaoko belt (Namibia): part of a late Neoproterozoic continental-scale strike-slip system. Geology 24:503–506

    Article  Google Scholar 

  • France-Lanord C, Le Fort P (1988) Crustal melting and granite genesis during the Himalayan collision orogenesis. Trans Roy Soc Edinburgh Earth Sci 79:183–195

    Article  Google Scholar 

  • Franz L, Romer R, Dingeldey DP (1999) Diachronous Pan-African granulite-facies metamorphism (650 and 550 Ma) in the Kaoko Belt, NW Namibia. Eur J Mineral 11:167–180

    Google Scholar 

  • Goscombe B, Hand M, Gray D, Mawby J (2003) The metamorphic architecture of a transpressional orogen: the Kaoko Belt, Namibia. J Petrol 44:679–711

    Article  Google Scholar 

  • Halliday AN, Stephens WE, Harmon RS (1980) Rb-Sr and O isotope relationships in 3 zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridisation of magmas. J Geol Soc London 137:329–348

    Article  Google Scholar 

  • Harris NBW, Inger S (1992) Trace element modelling of pelite derived granites. Contrib Mineral Petrol 110:46–56

    Article  Google Scholar 

  • Heinrichs H, Herrmann AG (1990) Praktikum der Analytischen Geochemie. Springer, Berlin

    Google Scholar 

  • Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Article  Google Scholar 

  • Hildreth EW, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Inger S, Harris N (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valeey, Nepal Himalaya. J Petrol 34:345–368

    Google Scholar 

  • Jackson S, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Jung S, Hoernes S, Hoffer E (2005) Petrogenesis of cogenetic nepheline and quartz syenites and granites (Northern Damara orogen, Namibia)—enriched mantle vs. crustal contamination. J Geol 113:651–672

    Article  Google Scholar 

  • Kerr A, Fryer BJ (1993) Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem Geol 104:39–60

    Article  Google Scholar 

  • Konopásek J, Kröner S, Kitt SL, Passchier CW, Kröner A (2005) Oblique collision and evolution of large-scale transcurrent shear zones in the Kaoko belt, NW Namibia. Prec Res 136:139–157

    Article  Google Scholar 

  • Kröner S (2005) Geochronological and structural evolution of the western and central Kaoko Belt in NW Namibia. Dissertation, University of Mainz

  • Kröner S, Konopásek J, Kröner A, Passchier CW, Poller U, Wingate MTD, Hofmann KH (2004) U-Pb and Pb-Pb zircon ages for metamorphic rocks in the Kaoko Belt of Northwestern Namibia: A Palaeo- to Mesoproterozoic basement reworked during the Pan-African orogeny. S Afr J Geol 107:455–476

    Article  Google Scholar 

  • Larsson D, Söderlund U (2005) Lu-Hf apatite geochronology of mafic cumulates: an example from a Fe–Ti mineralization at Smalands Taberg, southern Sweden. Chem Geol 224:201–211

    Article  Google Scholar 

  • Lechler PJ, Desilets MO (1987) A review of the use of loss on ignition as a measurement of total volatiles in whole rock analysis. Chem Geol 63:341–344

    Article  Google Scholar 

  • LeFort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57

    Article  Google Scholar 

  • Luft JL Jr, Chemale F Jr, Armstrong R (2011) Evidence of 1.7 to 1.8 Ga-old collisional arc in the Kaoko Belt, NW Namibia. Int J Earth Sci 100:305–321

    Article  Google Scholar 

  • Mattinson JM (1986) Geochronology of high-pressure-low temperature Franciscan metabasites. A new approach using the U-Pb system. Geol Soc Amer Mem 164:95–105

    Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotope characteristics of S- and I-type granites. Earth Planet Sci Lett 58:51–64

    Article  Google Scholar 

  • Michard A, Guriet P, Soudant M, Albarède F (1985) Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim Cosmochim Acta 49:601–610

    Article  Google Scholar 

  • Miller RMCG (1983) The Pan-African Damara Orogen of Namibia. In: Miller RMcG (ed) The Damara Orogen. Spec Publ Geol Soc S Afr, vol 11, pp 431–515

  • Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol 93:673–689

    Article  Google Scholar 

  • Miller RMCG (2008) The geology of Namibia, vol 1 Archean to Mesoproterozoic. Ministry of Mines and Energy, Geological Survey, Windhoek, p 320

    Google Scholar 

  • Millisenda C, Liew TC, Hofmann AW, Köhler H (1994) Nd isotopic mapping of the Sri Lanka basement: updata, and additional constraints from Sr isotopes. Prec Res 66:95–110

    Article  Google Scholar 

  • Morel MLA, Nebel O, Nebel-Jacobsen Y, Miller JS, Vroon PZ (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255:231–235

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer EE, Mezger K (2001) Separation of High Field Strength Elements (Nb, Ta, Zr, Hf, and Lu) from rock samples for MC-ICPMS measurements. Geochem Geophys Geosys 2:2002GC000183

  • Nebel O, Morel MLA, Vroon PZ (2009) Isotope dilution analyses of Lu, Hf, Zr, Ta and W, and Hf-isotope compositions of NIST SRM-610 and SRM-612 glass wafers. Geostandard Geoanalytical Res 33:487–499

    Article  Google Scholar 

  • Nebel O, van Westrenen W, Vroon PZ, Wille M, Raith MM (2010a) Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a Hadean magma ocean. Geochim Cosmochim Acta 74:4392–4404

    Article  Google Scholar 

  • Nebel O, Vroon PZ, Wiggers de Vries DF, Jenner F, Mavrogenes JA (2010b) Tungsten isotopes as tracers of core—mantle interactions: the influence of subducted sediments. Geochim Cosmochim Acta 74:751–762

    Article  Google Scholar 

  • Nebel-Jacobsen Y, Scherer EE, Münker C, Mezger K (2005) Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chem Geol 220:105–120

    Article  Google Scholar 

  • Ortega LA, Gil-Ibarguchi JIG (1990) The genesis of late Hercynian granitoids from Galicia (northwestern Spain): Inferences from REE studies. J Geol 98:189–211

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ, Ribeiro A, Paciullo FVP (2002) Tectonic evolution of the southern Kaoko Belt, Namibia. J Afr Earth Sci 35:61–75

    Article  Google Scholar 

  • Patchett PJ, Bridgwater D (1984) Origin of continental crust of 1.9–1.7 Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. Contrib Mineral Petrol 87:311–318

    Article  Google Scholar 

  • Pickett DA, Wasserburg GJ (1989) Neodymium and strontium isotope characteristics of New Zealand granitoids and related rocks. Contrib Mineral Petrol 103:131–142

    Article  Google Scholar 

  • Porada H (1989) Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Prec Res 44:103–136

    Article  Google Scholar 

  • Prave AR (1996) Tale of three cratons: tectonostratigraphic anatomy of the Damara Orogen in northwestern Namibia and the assembly of Gondwana. Geology 24:1115–1118

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman/Wiley, London/NJ, p 352

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust-a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Sachs PE, Secor DT Jr (1990) Delamination in collisional orogens. Geology 18:999–1002

    Article  Google Scholar 

  • Scaillet B, France-Lanord C, LeFort P (1990) Badrinath-Gangotri plutons (Gharwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. J Volc Geotherm Res 44:163–188

    Article  Google Scholar 

  • Scherer EE, Cameron KL, Johnson CM, Beard BL, Barovich KM, Collerson KD (1997) Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chem Geol 142:63–78

    Article  Google Scholar 

  • Scherer EE, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Searle MP, Crawford MB, Rex AJ (1992) Field relations, geochemistry, origin and emplacement of the Baltoro Granite, central Karakoram. Trans Roy Soc Edinburg Earth Sci 83:519–538

    Article  Google Scholar 

  • Searle MP, Parrish RR, Hodges KV, Hurford KV, Ayres MW, Whitehouse MJ (1997) Shisha Pangma leucogranite, South Tibetean Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol 195:295–317

    Article  Google Scholar 

  • Seth B, Kröner A, Mezger K, Nemchin AA, Pidgeon RT, Okrusch M (1998) Archaean to Neoproterozoic magmatic events in the Kaoko belt of NW Namibia and their geodynamic significance. Prec Res 92:341–363

    Article  Google Scholar 

  • Seth B, Okrusch M, Wilde M, Hoffmann KH (2000) The Voetspoer intrusion, southern Kaoko zone, Namibia: mineralogical, geochemical and isotopic constraints for the origin of a syenitic magma. Communs Geol Surv Namibia 12:125–137

    Google Scholar 

  • Seth B, Jung S, Hoernes S (2002) Isotope constraints on the origin of Pan African granitoid rocks in the Kaoko Belt NW Namibia. South Afr J Geol 105:179–192

    Article  Google Scholar 

  • Seth B, Jung S, Gruner B (2008) Deciphering polymetamorphic episodes in high-grade metamorphic orogens: Constraints from PbSL, Sm/Nd and Lu/Hf garnet dating of low- to high-grade metasedimentary rocks from the Kaoko belt (Namibia). Lithos 104:131–146

    Article  Google Scholar 

  • Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada. Geochim Cosmochim Acta 50:2631–2651

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Sparks RSJ (1986) The role of crustal contamination in magma evolution through geological time. Earth Planet Sci Lett 78:211–223

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by Excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Article  Google Scholar 

  • Trompette R, Carozzi AV (1994) Geology of Western Gondwana (2000–500 Ma). Pan-African–Brasiliano aggregation of South America and Africa. A. A. Balkema, Rotterdam

  • Vervoort JD, Patchett PJ (1996) Behaviour of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta 60:3717–3733

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf-Nd isotopic evolution of the lower crust. Earth Planet Sci Lett 181:115–129

    Article  Google Scholar 

  • Vidal P, Cocherie A, LeFort P (1982) Geochemical investigations of the origin of the Manslu leucogranite (Himalaya, Nepal). Geochim Cosmochim Acta 46:2279–2292

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Werner CD (1987) Saxonian granulites—igneous or lithogenous? A contribution to the geochemical diagnosis of the original rocks in high-metamorphic complexes. In: Gerstenberger H (ed) Contribution to the geology of the Saxonian granulite massif (Sächsisches Granulitgebirge). Zfl-Mitteilungen 133:221–250

  • Will TM, Okrusch M, Gruner BB (2004) Barrovian and Buchan type metamorphism in the Pan-African Kaoko Belt, Namibia: implications for its geotectonic position within the framework of Western Gondwana. S Afr J Geol 107:431–454

    Article  Google Scholar 

  • Williamson BJ, Downes H, Thirlwall MF, Beard A (1997) Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40:295–319

    Article  Google Scholar 

Download references

Acknowledgments

The Sr, Nd, and Pb isotope analyses were supported by the Max-Planck-Society, and Albrecht W. Hofmann (Max-Planck-Institut, Mainz) is thanked for hospitality and free access to mass spectrometry facilities while Stefan Jung held a postdoc position in Mainz. Iris Bambach (Max-Planck-Institut, Mainz) did a superb job in managing the line drawings. Andreas Busch (Marburg) is thanked for providing major and trace element data. Stefan Jung acknowledges the help of Alfred Kröner in providing sample material from the PhD study of Stephan Kröner. Farid Chemale Jr. (University of Brasil; Brasilia) is warmly thanked for giving access to unpublished Sr isotope data. We would like to thank J. Patchett and an anonymous reviewer for very constructive reviews that greatly improved the manuscript. We also appreciate the patient and professional editorial handling of the manuscript by Jochen Hoefs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jung.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S., Mezger, K., Nebel, O. et al. Origin of Meso-Proterozoic post-collisional leucogranite suites (Kaokoveld, Namibia): constraints from geochronology and Nd, Sr, Hf, and Pb isotopes. Contrib Mineral Petrol 163, 1–17 (2012). https://doi.org/10.1007/s00410-011-0655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0655-y

Keywords

Navigation