Skip to main content
Log in

Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Moa-Baracoa and Mayarí-Cristal massifs (eastern Cuba) are two ophiolitic complexes mainly constituted by harzburgite tectonites and minor dunites, cut by gabbroic dykes. The Moa-Baracoa massif exhibits a well developed Moho transition zone and an incomplete crustal section made up of layered gabbros and tectonically emplaced pillow basalts. A plutonic crustal section is absent in the Mayarí-Cristal massif and mantle tectonites are in tectonic contact with arc-related volcanic rocks. Mantle peridotites are very refractory in terms of modal composition, whole rock major element and HREE contents implying that Moa-Baracoa and Mayarí-Cristal harzburgites are residues after high degrees (20–30%) of partial melting. The relative enrichment of Th, Nb, Ta and LREE in peridotites is due to re-equilibration of melting residues with percolating melts. Peridotites lost on average 6 wt% of relative MgO by intense seafloor weathering. REE contents and Mg# of melts in equilibrium with cumulate gabbros from the Moho transition zone and crustal section of the Moa-Baracoa massif coincide with those of the spatially-related pillow basalts. On the other hand, no geochemical relation has been inferred between melt in equilibrium with Mayarí-Cristal segregate and the spatially-related arc volcanics. Our results indicate that the Mayarí-Baracoa Ophiolitic Belt formed at an original back-arc spreading centre. The Moa-Baracoa massif represents a portion of MORB-like lithosphere located nearby a back-arc mid-ocean spreading ridge, and the Mayarí-Cristal massif represents a piece of transitional (MORB to IAT) mantle located closer to the paleo-volcanic arc than Moa-Baracoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Asimow PD (1999) A model that reconciles major- and trace-element data from abyssal peridotites. Earth Planet Sci Lett 169:303–319

    Article  Google Scholar 

  • Baker MB, Beckett JR (1998) The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth Planet Sci Lett 171:49–61

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14(10):848–851

    Article  Google Scholar 

  • Bédard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem Geol 118(1–4):143–153

    Article  Google Scholar 

  • Bodinier JL, Godard M (2003) Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed) Treatise on geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 103–170

  • Bodinier JL, Vasseur G, Vernières J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism—geochemical evidence from the Lherz orogenic peridotite. J Petrol 31(3):597–628

    Article  Google Scholar 

  • Bodinier JL, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60(3):545–550

    Article  Google Scholar 

  • Bonatti E, Honnorez J, Ferrara G (1971) Peridotite-gabbro-basalt complex from the equatorial mid-Atlantic ridge. Philos Trans R Soc A268:385–402

    Article  Google Scholar 

  • Canil D (2004) Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77:375–393

    Article  Google Scholar 

  • Cannat M, Lagabrielle Y, Bougault H, Casey J, deCoutures N, Dmitriev L, Fouquet Y (1997) Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15 degrees N region. Tectonophysics 279(1–4):193–213

    Article  Google Scholar 

  • Casey JF (1997) Comparison of major and trace element geochemistry of abyssal peridotites and mafic plutonic rocks with basalt from the MARK region of the mid-Atlantic ridge. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Mid-Atlantic ridge: leg 153, sites 920–924, vol 153. College Station, pp 181–241

  • Cazañas X, Proenza J, Kysar Mattietti G, Lewis J, Melgarejo JC (1998) Rocas volcánicas de las series Inferior y Media del Grupo El Cobre en la Sierra Maestra (Cuba Oriental): volcanismo generado en un arco de islas tholeiítico. Acta Geol Hispan 33:277–333

    Google Scholar 

  • Cobiella-Reguera JL (2002) Remains of oceanic lithosphere in Cuba. Types, origins and emplacement ages. In: Jackson T (ed) Caribbean geology into the third millennium. Transactions of the fifteenth Caribbean geological conference. University of the West Indies, pp 35–46

  • Constantin M (1995) Petrologie des gabbros et peridotites de la dorsale Est-Pacifique: la transition croute-manteau aux dorsale rapides. In: Geologie Bretagne Occidentale, Brest, p 286

  • Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publication, pp 71–105

  • Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69(1):88–106

    Article  Google Scholar 

  • García-Casco A, Pérez de Arce C, Millán G, Iturralde-Vinent MA, Fonseca E, Torres-Roldán R, Núnez K, Morata D (2003) Metabasites from the Northern serpentinite belt (Cuba) and a metamorphic perspective of the plate tectonic models for the Caribbean region. In: Field workshop of the IGCP Project 433 Scientific Meeting, V Geological and Mining Congress of the Cuban Geological Society

  • Garrido CJ, Bodinier JL, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181(3):341–358

    Article  Google Scholar 

  • Gervilla F, Proenza JA, Frei R, González-Jiménez JM, Garrido CJ, Melgarejo JC, Meibom A, Díaz-Martinez R, Lavaut W (2005) Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 150:589–607

    Article  Google Scholar 

  • Godard M, Jousselin D, Bodinier JL (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180(1–2):133–148

    Article  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostand Newslett XVIII (Spec. Issue)

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43(12):2305–2338

    Article  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Article  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace-element analysis of peridotites and their minerals. Geostand Newslett 16(2):311–315

    Article  Google Scholar 

  • Iturralde-Vinent MA (1994) Cuban geology: a new plate tectonic synthesis. J Petrol Geol 17:39–69

    Article  Google Scholar 

  • Iturralde-Vinent MA (1996) Introduction to cuban geology and geophysics. In: Iturralde-Vinent MA (ed) Ofiolitas y Arcos Volcanicos de Cuba. IUGS-UNESCO Project 364. Caribbean Ophiolites and Volcanic Arcs. Special Contribution, Miami, pp 3–35

  • Iturralde-Vinent MA (1998) Sinopsis de la Constitución Geológica de Cuba. In: Melgarejo JC, Proenza JA (eds) Geología y Metalogenia de Cuba: una introducción. Acta Geologica Hispanica, vol 33(1–4), pp 9–56

  • Iturralde-Vinent MA (2003) The relationship between the ophiolites, the metamorphic terrains, the Cretaceous volcanic arcs and the Paleocene–Eocene volcanic arc. Field guide to a geological excursion to Eastern Cuba. In: V Cuban Geological and Mining Congress, March 2003. IGCP Project 433. Cuban Geological Society, p 16

  • Iturralde-Vinent MA, Díaz-Otero C, Rodríguez-Vega A, Díaz-Martínez R (2006) Tectonic implications of paleontologic dating of Cretaceous sections of northeastern Cuba. Geol Acta (in press)

  • Jagoutz E, Palme H, Blum H, Cendales M, Dreibus G, Spettel B, Lorenz V, Wanke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proceeding of 10th lunar planetary science conference. Geochim Cosmochim Acta Suppl 10:2031–2051

    Google Scholar 

  • Jochum KP, Seufert HM, Thirwall MF (1990) Muti-element analysis of 15 international standard rocks by isotope-dilution spark source mass spectrometry (ID-SSMS). Anal Chem 331:104–110

    Article  Google Scholar 

  • Jousselin D, Nicolas A (2000) The Moho transition zone in the Oman ophiolite: relation with wehrlites in the crust and dunites in the mantle. Mar Geophys Res 21(3–4):229–241

    Article  Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt rock reaction in the upper mantle. Nature 358(6388):635–641

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146(3–4):475–488

    Article  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164(1–2):387–406

    Article  Google Scholar 

  • Kerr AC, Iturralde-Vinent MA, Saunders AD, Babbs TL, Tarney J (1999) A new plate tectonic model of the Caribbean: implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geol Soc Am Bull 111(11):1581–1599

    Article  Google Scholar 

  • Koga KT, Kelemen PB, Shimizu N (2001) Petrogenesis of the crust–mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochem Geophys Geosyst 2:art. no. 2000GC000132

  • Korenaga J, Kelemen PB (1997) Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J Geophys Res Solid Earth 102(B12):27729–27749

    Article  Google Scholar 

  • Kysar Mattietti G (2001) The role of Paleogene magmatism in the evolution of the northern Caribbean margin. In: The Sierra Maestra (southern Cuba). George Washington University, p 187

  • Lee C-TA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy of paleo-fO2 during partial melting: prospects, limitations and implications. Geochim Cosmochim Acta 67(16):3045–3064

    Article  Google Scholar 

  • Meschede M, Frisch W (1998) A plate tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics 296:269–291

    Article  Google Scholar 

  • Metzger EP, Miller RB, Harper GD (2002) Geochemistry and tectonic setting of the ophiolitic ingalls complex, North Cascades, Washington: implications for correlations of Jurassic cordilleran ophiolites. J Geol 110:543–560

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer, Dordrecht, p 367

    Book  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Niu Y, Hékinian R (1997) Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges. Earth Planet Sci Lett 146:243–258

    Article  Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152(1–4):251–265

    Article  Google Scholar 

  • Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18

    Article  Google Scholar 

  • Pallister JS, Knight RJ (1981) Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman. J Geophys Res 86:2673–2697

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39:1577–1618

    Article  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Pindell JL (1994) Evolution of the Gulf of Mexico and the Caribbean. In: Donovan S, Jackson T (eds) Caribbean geology, an introduction. U.W.I. Publishers’ Association, Kingston, pp 13–40

    Google Scholar 

  • Pindell JL, Barrett SF (1990) Geological evolution of the Caribbean Region; a plate-tectonic perspective. In: Dengo G, Case J (eds) The geology of North America, vol H. The Caribbean Region. GSA, pp 405–432

  • Proenza J, Gervilla F, Melgarejo JC (1999a) La Moho Transition Zone en el Macizo Ofiolítico Moa-Baracoa: un ejemplo de interacción magma/peridotita. Rev Soc Geol España 12:309–327

    Google Scholar 

  • Proenza J, Gervilla F, Melgarejo JC, Bodinier JL (1999b) Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ Geol 94:547–566

    Article  Google Scholar 

  • Proenza J, Alfonso J, Melgarejo JC, Gervilla F, Tritlla J, Fallick AE (2003) D, O and C isotopes in podiform chromitites as fluid tracers for hydrothermal alteration processes of the Mayarí-Baracoa Ophiolitic Belt, eastern Cuba. J Geochem Explor 78–79:117–122

    Article  Google Scholar 

  • Proenza JA, Díaz-Martínez R, Marchesi C, Melgarejo JC, Gervilla F, Garrido CJ, Rodríguez-Vega A, Lozano-Santacruz R, Blanco-Moreno J (2006) Primitive island-arc volcanic rocks in Eastern Cuba: the Téneme Formation. Geol Acta (in press)

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Shibata T, Thompson G (1986) Peridotites from the mid-Atlantic ridge at 43°N and their petrogenetic relation to abyssal tholeiites. Contrib Mineral Petrol 93:144–159

    Article  Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59(20):4219–4235

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publication, pp 313–345

  • Vernières J, Godard M, Bodinier JL (1997) A plate model for the simulation of the trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24771–24784

    Article  Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 363–394

Download references

Acknowledgements

The authors are thanked to A. Rodriguez-Vega (Ñico), R. Díaz Martínez, J. Batista Rodríguez and S. Pereira for field assistance. We acknowledge X. Llovet (Serveis Cientificotècnics of the Universitat de Barcelona), O. Bruguier and S. Pourtales (ISTEEM, Montpellier) for their kind assistance during EMPA and ICP-MS analyses. Detailed and critical reviews by E. Rampone and O. Müntener significantly improved the manuscript. C.M. thanks P. Montagna for fruitful discussions on MABE evaluation procedure. This research has been financially supported by the spanish “Ministerio de Ciencia y Tecnología” through the research grants BTE2001–3308, CGL2004–00622, and “Acción Integrada Hispano-Francesa” HF2002–0093, and by the Junta de Andalucía Research Group RNM 131. C.J.G. research has been supported by a “Ramón y Cajal” fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Marchesi.

Additional information

Communicated by M.W. Schmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesi, C., Garrido, C.J., Godard, M. et al. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 151, 717–736 (2006). https://doi.org/10.1007/s00410-006-0089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0089-0

Keywords

Navigation