Skip to main content
Log in

Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Mayarí-Baracoa ophiolitic belt in eastern Cuba hosts abundant chromite deposits of historical economic importance. Among these deposits, the chemistry of chromite ore is very variable, ranging from high Al (Cr#=0.43–0.55) to high Cr (Cr#=0.60–0.83) compositions. Platinum-group element (PGE) contents are also variable (from 33 ppb to 1.88 ppm) and correlate positively with the Cr# of the ore. Bulk PGE abundances correlate negatively with the Pd/Ir ratio showing that chromite concentrates mainly Os, Ir and Ru which gives rise to the characteristic negatively sloped, chrondrite-normalized PGE patterns in many chromitites. This is consistent with the mineralogy of PGEs, which is dominated by members of the laurite–erlichmanite solid solution series (RuS2–OsS2), with minor amounts of irarsite (IrAsS), Os–Ir alloys, Ru–Os–Ir–Fe–Ni alloys, Ni–Rh–As, and sulfides of Ir, Os, Rh, Cu, Ni, and/or Pd. Measured 187Os/188Os ratios (from 0.1304 to 0.1230) are among the lower values reported for podiform chromitites. The 187Os/188Os ratios decrease with increasing whole-rock PGE contents and Cr# of chromite. Furthermore, γOs values of all but one of the chromitite samples are negative indicating a subchondiritc mantle source. γOs decrease with increasing bulk Os content and decreasing 187Re/188Os ratios. These mineralogical and geochemical features are interpreted in terms of chromite crystallization from melts varying in composition from back-arc basalts (Al-rich chromite) to boninites (Cr-rich chromite) in a suprasubduction zone setting. Chromite crystallization occurs as a consequence of magma mixing and assimilation of preexisting gabbro sills at the mantle–crust transition zone. Cr#, PGE abundances, and bulk Os isotopic composition of chromitites are determined by the combined effects of mantle source heterogeneity, the degree of partial melting, the extent of melt-rock interactions, and the local sulfur fugacity. Small-scale (μm to cm) chemical and isotopic heterogeneities in the platinum-group minerals are controlled by the mechanism(s) of chromite crystallization in a heterogeneous environment created by the turbulent regime generated by successive inputs of different batches of melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Article  Google Scholar 

  • Ahmed AH, Arai S (2003) Platinum-group minerals in podiform chromitites of the Oman ophiolite. Can Mineral 41:597–616

    Article  Google Scholar 

  • Ahmed AH, Kelemen P, Arai S, Hart S (2002) Osmium isotope systematics of platinum-group minerals in proterozoic and phanerozoic ophiolitic chromitites: implications for chromitite genesis. In: Fouth international workshop on orogenic Lherzolites and Mantle processes. Abstract volume, Samani, Hokkaido, Japan, pp 3

  • Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in the sulfides. Nature 407:891–894

    Article  PubMed  Google Scholar 

  • Alard O, Griffin WL, Pearson NJ, Lorand J-P, O’Reilly SY (2002) New insights into the Re-Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet Sci Lett 203:651–663

    Article  Google Scholar 

  • Andrews DRA, Brenan JM (2002) Phase equilibrium constraints on the magmatic origin of laurite+Ru-Os-Ir alloy. Can Mineral 40:1705–1716

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–784

    Article  Google Scholar 

  • Arai S, Abe N (1994) Possible presence of podiform chromitite in the arc mantle: chromitite xenoliths from the Takashima alkali basalt, southwest Japan arc. Miner Deposita 29:434–438

    Article  Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, Southwestern Japan, as mantle-melt interaction products. Econ Geol 89:1279–1288

    Google Scholar 

  • Arai S, Yurimoto H (1995) Possible sub-arc origin of podiform chromitites. The Island Arc 4:104–111

    Article  Google Scholar 

  • Augé T (1987) Chromite deposits in the northern Oman ophiolite. Miner Deposita 22:1–10

    Article  Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208:61–88

    Article  Google Scholar 

  • Bacuta GC(Jr), Kay RW, Gibbs AK, Lipin BR (1990) Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales ophiolite complex, Philippines. J Geochem Explor 37:113–145

    Article  Google Scholar 

  • Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41:545–561

    Article  Google Scholar 

  • Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pedersen RB, Robins B (1988) The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geoplatinum 87. Elsevier, London, pp 113–144

    Google Scholar 

  • Becker H, Shirey SB, Carlson RW (2001) Effects of melt percolation on the Re–Os systematics of peridotites from a Paleozoic convergent margin. Earth Planet Sci Lett 188:107–121

    Article  Google Scholar 

  • Bédard JH, Hébert R (1998) Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotitic intrusions: North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada. J Geophys Res 103:5165–5184

    Article  Google Scholar 

  • Blusztajn J, Hart SR, Ravizza G, Dick HJB (2000). Platinum-group elements and Os isotopic characteristics of the lower oceanic crust. Chem Geol 168:113–122

    Article  Google Scholar 

  • Bockrath C, Ballhaus C, Holzheid A (2004) Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature. Chem Geol 208:265–271

    Article  Google Scholar 

  • Brandon AD, Creaser RA, Shirey SB, Carlson RW (1996) Osmium recycling in subduction zones. Science 272:861–864

    Article  PubMed  Google Scholar 

  • Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335

    Article  Google Scholar 

  • Brenan JM, Andrews DRA (2001) High-temperature stability of laurite and Ru–Os–Ir alloys and their role in PGE fractionation in mafic magmas. Can Mineral 39:341–360

    Article  Google Scholar 

  • Brenker FE, Meibom A, Frei R (2003) On the formation of peridotite-derived Os-rich PGE alloys. Am Mineral 88:1731–1740

    Google Scholar 

  • Büchl A, Brügmann G, Batanova VG (2004a) Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chem Geol 208:217–232

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Hofmann A (2004b) Os mobilization during melt percolation. The evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochim Cosmochim Acta 68:3397–3404

    Article  Google Scholar 

  • Burton K, Schiano P, Birck J-L, Allegre CJ (1999) Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth Planet Sci Lett 172:311–322

    Article  Google Scholar 

  • Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium and palladium between spinel and silicate melt and implications for platinum-goup elements fractionation trends. Geochim Cosmochim Acta 54:869–874

    Article  Google Scholar 

  • Chan TK, Finch IJ (2001) Determination of platinum-group elements and gold by inductively coupled plasma mass spectrometry. In: Australian Platinum Conference, Perth, Western Australia

  • Chesley J, Righter K, Ruiz J (2004) Large-scale mantle metasomatism: a Re–Os perspective. Earth Planet Sci Lett 219:49–60

    Article  Google Scholar 

  • Cohen AS, Waters FG (1996) Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal Chim Acta 332:269–275

    Article  Google Scholar 

  • Crocket JH (1979) Platinum-group elements in mafic and ultramafic rocks, a survey. Can Mineral 17:391–402

    Google Scholar 

  • Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96:326–342

    Article  Google Scholar 

  • Eckstrand OD (1975) The Dumont serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70:183–201

    Article  Google Scholar 

  • Economou-Eliopoulos M (1986) Platinum-group element in chromite and sulfide ores within the ultramafic zone of some Greek ophiolite complexes. In: Gallagher MJ, Ixer RA, Neary CR, Pritchard HM (eds) Metallogeny of basic and ultrabasic rocks. Inst Mining and Metallurgy Publ, London, pp 441–454

    Google Scholar 

  • Edwards SJ, Pearce JA, Freeman J (2000) New insights concerning the influence of water during the formation of podiform chromite. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program, Boulder, Colorado. Geological Society of America Special Paper 349, pp 139–147

  • Esperança S, Sichel SE, Horan MF, Walker RJ, Juteau T (1999) Some abyssal peridotites are old! In: 9th goldschmidt meeting, pp 21–22

  • Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26:31–63

    Google Scholar 

  • Gannoun A, Burton KW, Thomas LE, Parkinson IJ, van Calsteren P, Schiano P (2004) Osmium isotope heterogeneity in the constituent phases of Mid-Ocean Ridge Basalts. Science 303:70–72

    Article  PubMed  Google Scholar 

  • Garuti G, Zaccarini F (1997) In situ alteration of platinum-group minerals at low temperature: evidences from serpentinized and weathered chromitite of the Vourinos complex, Greece. Can Mineral 35:611–626

    Google Scholar 

  • Garuti G, Zaccarini F, Moloshag V, Alimov V (1999) Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Can Mineral 37:1099–1115

    Google Scholar 

  • Guild PW (1947) Petrology and structure of the Moa Chromite District, Oriente province, Cuba. Am Geophys Union 28:218–246

    Google Scholar 

  • Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM (1985) Precious metals in magnesian low-Ti lavas: implication for metallogenesis and sulfur saturation in primary magmas. Geochim Cosmochim Acta 49:1797–1811

    Article  Google Scholar 

  • Handler MR, Bennett VC, Esat TM (1997) The persistence of off-cratonic lithospheric mantle: Os isotopic systematics of variably metasomatized southeast Australian xenoliths. Earth Planet Sci Lett 151:61–75

    Article  Google Scholar 

  • Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbross. Geochim Cosmochim Acta 63:4059–4080

    Article  Google Scholar 

  • Hassler DR, Shimizu N (1998) Osmium isotopic evidence for ancient subcontinetal lithospheric mantle beneath the Kerguelen Islands, Southern Indian Ocean. Science 280:418–421

    Article  PubMed  Google Scholar 

  • Hattori K, Hart SR (1991) Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotope evolution of the oceanic mantle. Earth Planet Sci Lett 107:499–514

    Article  Google Scholar 

  • Irvine TN (1975) Chromite crystallization in the joint Mg2SiO4–CaMgSi2O8–MgCr2O4–SiO2. Carnagie Institution Washington Yearbook 76, pp 465–472

  • Irvine TN (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Iturralde-Vinent M (1996) Geología de las ofiolitas de Cuba. In: Iturralde-Vinent M (eds) Ofiolitas y arcos volcánicos de Cuba, IGCP Project 364. Miami, USA, pp 83–120

  • Iturralde-Vinent MA, Díaz Otero C, Rodríguez-Vega A, Díaz-Martínez R (2005) Tectonic implications of paleontologic dating of Cretaceous–Danian sections of Northeastern Cuba. Geol Acta (in press)

  • Konstantopoulou UG, Economou M (1991) Distribution of platinum-group elements and gold within the Vourinos chromite ores, Greece. Econ Geol 86:672–1682

    Google Scholar 

  • Lavaut W, Medina A, Acosta J, Guerra M, Figueredo D (1994) Investigaciones geólogo-geofísicas actuales del macizo ofiolítico Sierra de Nipe: un sistema para el pronóstico y prospección de cromitas metalúrgicas. Resúmenes del Segundo Congreso Cubano de Geología y Minería, Santiago de Cuba, p 108

  • Leblanc M (1991) Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. In: Peters TJ, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of oceanic lithosphere. Kluwer, Dordrecht, pp 231–260

    Google Scholar 

  • Leblanc M (1995) Chromite and ultramafic rock compositional zoning through a paleotransform fault, Poum, New Caledonia. Econ Geol 90:2028–2039

    Google Scholar 

  • Luguet A, Alard O, Lorand J-P, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile geochemistry of the oceanic mantle. Earth Planet Sci Lett 189:285–294

    Article  Google Scholar 

  • Malitch KN (2004) Osmium isotope constraints on contrasting sources and prolonged melting in the Proteozoic upper mantle: evidence from ophiolitic Ru–Os sulfides and Ru–Os–Ir alloys. Chem Geol 208:157–173

    Article  Google Scholar 

  • Malitch KN, Junk SA, Thalhammer OAR, Melcher F, Knauf VV, Pernicka E, Stumpfl EF (2003) Laurite and ruarseite from podiforme chromitites at Kraubath and Hochgrössen, Austria: new insights from osmium isotopes. Can Mineral 41:331–352

    Article  Google Scholar 

  • Malpas J, Robinson PT, Zhou MF (1997) Chromitite and ultramafic rock compositional zoning through a paleotransform fault, Poum New Caledonia—a discussion. Econ Geol 92:502–504

    Google Scholar 

  • Marchesi C, Garrido CJ, Godard M, Proenza J, Gervilla F, Blanco-Moreno J (2005) Petrogénesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba). Contrib Mineral Petrol (Submitted)

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • Maurel C, Maurel P (1982) Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles. Bull Minéral 105:197–202

    Google Scholar 

  • McInnes BIA, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore metal recycling in subduction zones. Science 286:512–516

    Article  PubMed  Google Scholar 

  • Meibom A, Anderson DL (2003) The statistical upper mantle assemblage. Earth Planet Sci Lett 217:123–139

    Article  Google Scholar 

  • Meibom A, Frei R (2002) Evidence for an ancient osmium isotopic reservoir in Earth. Science 296:516–518

    Article  PubMed  Google Scholar 

  • Meibom A, Sleep NH, Chanberlain CP, Coleman RG, Frei R, Hren MT, Wooden JL (2002) Re–Os isotopic evidence for long lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419:705–708

    Article  PubMed  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposit of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458

    Article  Google Scholar 

  • Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Miner Deposita 34:250–272

    Article  Google Scholar 

  • Mungall J (2002) A model for co-precipitation of platinum-group minerals with chromite from silicate melts. In: 9th international platinum symposium, abstract with program, 21–25 July 2002, Billings, Montana, pp 321–324

  • Murashko VI, Lavandero RM (1989) Chromite in the hyperbasite belt of Cuba. Int Geol Rev 31:90–99

    Google Scholar 

  • Naegler TF, Frei R (1997) Plug in plug osmium distillation. Schweiz Mineral Petrogr Mitt 76:123–127

    Google Scholar 

  • Oen IS, Kieft C, Burke EAJ, Westerhof AB (1980) Orcelite and associated minerals in the Ni–Fe–As–S system in chromitites and orthopyroxenites of Nebral, Málaga, Spain. Bull Mineral 103:198–208

    Google Scholar 

  • Parkinson IJ, Hawkesworth CJ, Cohen AS (1998) Ancient mantle in a modern arc: osmium isotopes in Izu-Bonin-Mariana Forearc peridotites. Science 281:2011–2013

    Article  PubMed  Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59

    Article  Google Scholar 

  • Peslier AH, Reisberg L, Ludden J, Francis D (2000) Re–Os constraints on harzburgite and lherzolite formation in the lithospheric mantle: a study of Northern Canadian Cordillera xenoliths. Geochim Cosmochim Acta 64:3061–3071

    Article  Google Scholar 

  • Pindell JL, Barrett SF (1990) Geological evolution of the Caribbean region: a plate tectonic perspective. In: Dengo G, Case JE (eds) The Caribbean, volume H, decade of North American Geology, GSA, Boulder, Colorado, pp 404–432

  • Prichard HM, Lord RA, Neary CR (1996) A model to explain the occurrence of platinum- and palladium-rich ophiolite complexes. J Geol Soc Lond 153:323–328

    Article  Google Scholar 

  • Proenza J, Gervilla F, Melgarejo JC, Bodinier JL (1999) Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ Geol 94:547–566

    Google Scholar 

  • Proenza J, Gervilla F, Melgarejo JC, Vera O, Alfonso P, Fallick A (2001) Genesis of sulfide-rich chromite ores by the interaction between chromitite and olivine-norite dikes in the Potosí Mine (Moa-Baracoa ophiolitic massif, eastern Cuba). Miner Deposita 36:658–669

    Article  Google Scholar 

  • Proenza JA, Melgarejo JC, Gervilla F, Rodríguez-Vega A, Díaz-Martínez R, Ruiz-Sánchez R, Lavaut W (2003) Coexistence of Cr- and Al-rich ophiolitic chromitites in a small area: the Sagua de Tánamo district, Eastern Cuba. In: Eliopoulos et al. (eds) Mineral exploration and sustainable development, vol 1. Millpress, Rotterdam, pp 631–634

  • Proenza JA, Díaz-Martínez R, Marchesi C, Melgarejo JC, Gervilla F, Garrido CJ, Rodríguez-Vega A, Lozano-Santacruz R, Blanco-Moreno J (2005) Primitive island-arc cretaceous volcanic rocks in eastern Cuba: the Téneme formation. Geol Acta (in press)

  • Reisberg L, Lorand J-P (1995) Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376:159–162

    Article  Google Scholar 

  • Reisberg LC, Allègre CJ, Luck J-M (1991) The Re–Os systematics of the Ronda Ultramafic Complex of southern Spain. Earth Planet Sci Lett 105:196–213

    Article  Google Scholar 

  • Reisberg L, Lorand J-P, Bedini RM (2004) Reliability of Os model ages in pervasive metasomatized continental mantle lithosphere: a case study of Sidamo spinel peridotite xenoliths (East African Rift, Ethiopia). Chem Geol 2004:119–140

    Article  Google Scholar 

  • Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68:867–880

    Article  Google Scholar 

  • Robert S (1988) Ophiolitic chromitite formation: a marginal basin phenomenon. Econ Geol 83:1034–1036

    Google Scholar 

  • Robinson PT, Zhou MF, Malpas J, Bai WJ (1997) Podiform chromitites: their composition, origin and environment of formation. Episodes 20:247–252

    Google Scholar 

  • Roy-Barman M, Allègre CJ (1995) 187Os/186Os in oceanic island basalts; tracing oceanic crust recycling in the mantle. Earth Planet Sci Lett 129:145–161

    Article  Google Scholar 

  • Sattari P, Brenan JM, Horn I, McDonough WF (2002) Experimental constraints in the sulfide- and chromite-silicate melt partitioning behaviour of rhenium and platinum-group elements. Econ Geol 97:385–398

    Article  Google Scholar 

  • Schiano P, Birck J-L, Allegre CJ (1997a) Osmium–strontium–neodymium–lead isotopic covatiations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth Planet Sci Lett 150:363–379

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Lorand JP, Massare D, Deloule E, Chaussidon M (1997b) Primitive basaltic melts included in podiform chromites from the Oman ophiolite. Earth Planet Sci Lett 146:489–497

    Article  Google Scholar 

  • Schmidt G, Palme H, Kratz K-L, Kurat G (2000) Are highly siderophile elements (PGE, Re, and Au) fractionated in the upper mantle of the Earth? New results on peridotites from Zabargad. Chem Geol 163:167–188

    Article  Google Scholar 

  • Shirey SB, Walker RJ (1998) Re–Os isotopes in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500

    Article  Google Scholar 

  • Smoliar MI, Walker RJ, Morgan JW (1996) Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102

    Article  Google Scholar 

  • Snow JE, Reisberg L (1995) Os isotopic systematic of the MORB mantle; results from altered abyssal peridotites. Earth Planet Sci Lett 133:411–421

    Article  Google Scholar 

  • Stockman HW, Hlava PF (1984) Platinum-group minerals in Alpine chromitites from southwestern Oregon. Econ Geol 79:491–508

    Google Scholar 

  • Thayer TP (1942) Chrome resources of Cuba. US Geol Surv Bull 93-A:1–74

    Google Scholar 

  • Tredoux M, Lindsay NM, Davies G, MacDonald L (1995) The fractionation of platinum-group elements in magmatic system, with the suggestion of a novel casual mechanism. S Afr J Geol 98:157–167

    Google Scholar 

  • Walker RJ, Prichard HM, Ishiwatari A, Pimentel M (2002) The osmium isotopic composition of the convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Acta 66:329–345

    Article  Google Scholar 

  • Zhou MF, Robinson PT (1997) Origin and tectonic environment of podiform chromite deposits. Econ Geol 92:259–262

    Google Scholar 

  • Zhou MF, Robinson PT, Bai WJ (1994) Formation of podiforme chromites by melt-rock interaction in the upper mantle. Miner Deposita 29:98–101

    Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Zijin L (1996) Podiform chromites in the Luobusa Ophiolite (Southern Tibet): implications for mel–rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zhou MF, Sun M, Keays RR, Kerrich RW (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim Cosmochim Acta 62:677–688

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF, Yang JS (2001) Melt/mantle interaction and melts evolution in the Sartohay high-Al chromite deposits of the Salabute ophiolite (NW China). J Asian Earth Sci 19:517–534

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of A. Rodríguez-Vega, J. Blanco Moreno, J. Batista Rodríguez, R. Ruiz Sánchez, and S. Pereira during field work. We also acknowledge X. Llovet (Serveis Científico-Tècnics of the University of Barcelona), A. González Segura (Centro de Instrumentación Científica of the University of Granada) for their assistance with EPMA and FESEM, respectively, A. Caballero for his help in the final preparation of the figures and the critical review of C. Ballhaus. This research has been financially supported by the Spanish projects BTE2001-3308 and CGL2004-00622, the research group (RNM 131) of the Junta de Andalucia and by NSF grant EAR 0309414 to A.M. SNF grant 21-01-0492 to R.F. is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gervilla.

Additional information

Communicated by: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervilla, F., Proenza, J., Frei, R. et al. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 150, 589–607 (2005). https://doi.org/10.1007/s00410-005-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0039-2

Keywords

Navigation