Skip to main content
Log in

Archean adakites from the Ashuanipi complex, eastern Superior Province, Canada: geochemistry, geochronology and tectonic significance

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Adakitic geochemical features characterize the Desliens suite of pre-tectonic diorite to tonalite sills intruded into volcanogenic greywackes of the Archean Ashuanipi complex of the eastern Superior Province. High Mg, Mg# (0.43–0.63), Cr, Ni, Sr/Y and La/Yb cannot be attributed to effects of crustal assimilation, fractional crystallization or high-grade metamorphism, and therefore a process of incorporation of mantle wedge components by slab melts is invoked. Compositional features including positive correlations among MgO, K2O, LREEs and some LILEs suggest that the fraction of mantle fusion was controlled by the volume of slab-melt flux. Batch melting occurred as the metasomatized hanging-wall mantle descended through the 1,200 °C isotherm. U–Pb SHRIMP analyses indicate a range of zircon ages between 2,927 and 2,605 Ma. Multiple spots on single oscillatory-zoned grains suggest that an age of 2,723±6 Ma represents the least amount of lead loss and is therefore closest to the crystallization age. Older grains are interpreted as xenocrysts; metamorphism occurred between 2,696 and 2,635 Ma. The Desliens suite appears to have been generated in response to subduction of young oceanic crust prior to a ridge–trench collision and opening of a slab window which resulted in widespread metamorphism and crustal anatexis within the Ashuanipi complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3.
Fig. 4. a
Fig. 5a–g.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10a–c.
Fig. 11a–d.
Fig. 12.
Fig. 13a–d.

Similar content being viewed by others

References

  • Beate B, Monzier M, Spikings R, Cotton J, Silva J, Bourdon E, Eissen JP (2001) Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth Planet Sci Lett 192:561–570

    Article  CAS  Google Scholar 

  • Brandon AD, Becker H, Carlson RW, Shirey SB (1999) Isotopic constraints on time scales and mechanisms of slab material transport in the mantle wedge: evidence from the Simcoe mantle xenoliths, Washington, USA. Chem Geol 160:387–407

    Article  CAS  Google Scholar 

  • Brown M (1973) The definition of metatexis, diatexis and migmatite. Proc Geol Assoc 84:371–382

    CAS  Google Scholar 

  • Card KD, Poulsen KH (1998) Geology and mineral deposits of the Superior Province of the Canadian Shield. In: Lucas S (ed) Geology of the Precambrian Superior and Grenville provinces and precambrian fossils in North America, chap 2. Geol Surv Can Geology of Canada 7:13–194

    Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51

    CAS  Google Scholar 

  • Chevé SR, Brouillette P (1995) Géologie et métallogénie de la partie nord-est de la sous-province d'Ashuanipi (Nouveau Québec). Minér Ressources Nat Québec MM95-01

  • Corfu F, Davis DW (1992) A U–Pb geochronological framework for the western Superior Province, Ontario. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario. Ontario Geol Surv Spec vol 4(2):1335–1346

    Google Scholar 

  • Corfu F, Stott GM, Breaks FW (1995) U–Pb geochronology and evolution of the English River subprovince, an Archean low P–high T metasedimentary belt in the Superior Province. Tectonics 14:1220–1233

    Google Scholar 

  • Davis DW, Pezzutto F, Ojakangas RW (1990) The age and provenance of metasedimentary rocks in the Quetico subprovince, Ontario, from single zircon analyses: implications for Archean sedimentation and tectonics in the Superior Province. Earth Planet Sci Lett 99:195–205

    Article  CAS  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 324:662–665

    Google Scholar 

  • Defant MJ, Richerson PM, DeBoer JZ, Stewart RH, Maury RC, Bellon H, Drummond, MS, Feigenson MD, Jackson TE (1991) Dacite genesis via both slab melting and differentiation: petrogenesis of La Yegueda volcanic complex, Panama. J Petrol 32:1101–1142

    CAS  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21,503–21,521

    Google Scholar 

  • Drummond MS, Defant MJ, Kepezhinskas P (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans R Soc Edinb Earth Sci 87:205–215

    CAS  Google Scholar 

  • Evans OE, Hanson GN (1997) Late- to post-kinematic Archaean granitoids of the SW Superior Province: derivation through direct mantle melting. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford, UK, Oxford Monogr Geol Geophys 35, pp 280–295

  • Feldstein SN, Lange RA (1999) Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidence for melting of a subduction-modified mantle. J Petrol 40:1301–1320

    Article  CAS  Google Scholar 

  • Gutscher MA, Maury R, Eissen JP, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538

    CAS  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  CAS  Google Scholar 

  • Inoue T, Irifune T, Yurimoto H, Miyagi I (1998) Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Phys Earth Planet Interiors 107:221–231

    Article  CAS  Google Scholar 

  • James DT (1996) Geology of the Archean Ashuanipi complex, western Labrador. Geol Surv Newfoundland Labrador Rep 97-2

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:497–522

    Google Scholar 

  • Kay RW, Mahlburg Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionated basaltic magma. I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31:51–98

    Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  CAS  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    CAS  Google Scholar 

  • Kepezhinskas P, Defant MJ, Drummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim Cosmochim Acta 60:1217–1229

    Article  CAS  Google Scholar 

  • Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkeswaorth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr-Nd-Pb isotopic constraints on a three component model of Kamchatka arc petrogenesis. Geochim Cosmochim Acta 61:577–600

    Article  CAS  Google Scholar 

  • Lamothe D, Leclair A, Choinière J (1998) Géologie de la région du lac Vallard. Minér Ressources Nat Québec RG98-13

  • Lamothe D, Thériault R, Leclair A (2000) Géologie de la région du lac Nitchequon. Minér Ressources Nat Québec RG99-14

  • Lapointe B (1996) Un exemple de minéralisation aurifère en milieu profond; l'indice d'or du lac Lilois dans le complexe d'Ashuanipi, Province du Superior, Nouveau-Quebec. PhD Thesis, Université du Québec à Chicoutimi

  • Lapointe B, Chown EH (1993) Gold-bearing iron-formation in a granulite terrane of the Canadian Shield; a possible deep-level expression of an Archean gold-mineralizing system. Miner Deposita 28:191–197

    CAS  Google Scholar 

  • Leclair A, Lamothe D, Choinière J, Dion D-J (1996) Perspectives sur la structure et le potentiel minéral des roches archéennes du sud-est de la Province du Supérieur. Minér Ressources Nat Québec Pro96-05

  • Leclair A, Lamothe D, Choinière J, Parent M (1998) Géologie de la région du lac Bermen. Minér Ressources Nat Québec RG97-11

  • Machado N, Brooks C, Hart SR (1986) Determination of initial 87Sr/86Sr and 143Nd/144Nd in primary minerals from mafic and ultramafic rocks: experimental procedure and implications for the isotope characteristics of the Archean mantle under the Abitibi greenstone belt, Canada. Geochim Cosmochim Acta 50:2334–2348

    Google Scholar 

  • Mahlburg Kay S, Ramos VA, Marquez M (1993) Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol 101:703–714

    Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    CAS  Google Scholar 

  • Martin H (1999). Adakite magmas: modern analogues of Archean TTG suites. Lithos 46:411–429

    CAS  Google Scholar 

  • Martin H, Moyen J-F (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of progressive cooling of Earth. Geology 30:319–322

    Article  CAS  Google Scholar 

  • Mathison CI (1987) Pyroxene oikocrysts in troctolitic cumulates—evidence for supercooled crystallization and postcumulus modification. Contrib Mineral Petrol 97:228–236

    CAS  Google Scholar 

  • Morisset N (1988) Metamorphism and geothermometry of a layered ultramafic sill in the Ashuanipi complex, Superior Province, northern Quebec. BSc Thesis, University of Ottawa

  • Moritz RP, Chevé SR (1992) Fluid inclusion studies of high-grade metamorphic rocks of the Ashuanipi complex, eastern Superior Province: constraints on the retrograde P-T path and implications for gold metallogeny. Can J Earth Sci 29:2309–2327

    CAS  Google Scholar 

  • Mortensen JK, Percival JA (1987) Reconnaissance U-Pb zircon and monazite geochronology of the Lac Clairambault area, Ashuanipi complex, Quebec. Geol Surv Can Pap 87(2):135–142

    Google Scholar 

  • Nagerl P (1987) Geology of the Lac Desliens area, Labrador. BSc Thesis, Carleton University of Ottawa

  • Percival JA (1989) A regional perspective of the Quetico metasedimentary belt, Superior Province, Canada. Can J Earth Sci 26:677–693

    CAS  Google Scholar 

  • Percival JA (1991a) Orthopyroxene-poikilitic tonalites of the Desliens igneous suite, Ashuanipi granulite complex, Labrador-Quebec, Canada. Can J Earth Sci 28:743–753

    CAS  Google Scholar 

  • Percival JA (1991b) Granulite-facies metamorphism and crustal magmatism in the Ashuanipi complex, Quebec-Labrador, Canada. J Petrol 32:1261–1297

    CAS  Google Scholar 

  • Percival JA, Girard R (1988) Structural character and history of the Ashuanipi complex in the Schefferville area, Quebec-Labrador. Curr Res Geol Surv Can 88(1C):51–60

    Google Scholar 

  • Percival JA, Mortensen JK (2002) Water-deficient calc-alkaline plutonic rocks of northeastern Superior Province, Canada: significance of charnockitic magmatism J Petrol 43:1617–1650

    Google Scholar 

  • Percival JA, Skulski T (2000) Tectonothermal evolution of the northern Minto block, northeastern Superior Province, Canada. Can Mineral 38:345–378

    CAS  Google Scholar 

  • Percival JA, Mortensen JK, Stern RA, Card KD, Begin NJ (1992) Giant granulite terranes of northeastern Superior Province: the Ashuanipi complex and Minto block. Can J Earth Sci 29:2287–2308

    CAS  Google Scholar 

  • Percival JA, Stern RA, Skulski T, Card KD, Mortensen JK, Bégin NJ (1994) Minto block, Superior Province: missing link in deciphering assembly of the craton at 2.7 Ga. Geology 22:839–842

    Article  Google Scholar 

  • Percival JA, Stern RA, Skulski T (2001) Crustal growth through successive arc magmatism: reconnaissance U-Pb SHRIMP data from the northeastern Superior Province, Canada. Precambrian Res 109:203–238

    Article  CAS  Google Scholar 

  • Petford N, Atherton MP (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521

    CAS  Google Scholar 

  • Polat A, Kerrich R (2001) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contrib Mineral Petrol 141:36–52

    CAS  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25

    CAS  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    CAS  Google Scholar 

  • Sajona FG, Maury RC (1998) Association of adakites with gold and copper mineralization in the Philippines. C R Acad Sci Ser IIA Earth Planet 326:27–34

    Article  CAS  Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1010

    Article  CAS  Google Scholar 

  • Sajona FG, Bellon H, Maury RC, Pubellier M, Cotten J, Rangin C (1994) Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectonophysics 237:47–72

    CAS  Google Scholar 

  • Sajona FG, Maury RC, Pubellier M, Leterrier J, Bellon H, Cotten J (2000) Magmatic source enrichment by slab-derived melts in a young post-collisional setting, central Mindanao (Philippines). Lithos 54:173–206

    Article  CAS  Google Scholar 

  • Saunders AD Rogers G, Marriner CF, Terrell DJ, Verma SP (1987) Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: implications for the petrogenesis of post-subduction magmas. J Volcanol Geotherm Res 32:223–245

    CAS  Google Scholar 

  • Sawyer EW (1986) The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province, Canada. Chem Geol 55:445–473

    Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600

    CAS  Google Scholar 

  • Sekine T, Wyllie PJ (1982) Phase relationships in the system KalSiO4–Mg2SiO4–SiO2–H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol 79:368–374

    CAS  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakite. Contrib Mineral Petrol 117:394–409

    CAS  Google Scholar 

  • Skulski T, Villeneuve M (1999) Geochronological compilation of the Superior Province, Manitoba, Ontario, Quebec. Geol Surv Can Open File 3715

  • Smithies RA (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    CAS  Google Scholar 

  • Smithies RA, Champion DC (2000) The Archean high-Mg diorite suite: links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. J Petrol 41:1653–1671

    Article  CAS  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommisssion on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    CAS  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Article  CAS  Google Scholar 

  • Stern RA (1996) The SHRIMP II ion microprobe at the Geological Survey of Canada. Geosci Can 23:73–76

    Google Scholar 

  • Stern RA (1997) The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In: Age and isotopic studies, rep 10. Curr Res Geol Surv Can Pap 1997(F):1–31

    Google Scholar 

  • Stern RA (2001) A new isotopic and trace-element standard for the ion microprobe: preliminary thermal ionization mass spectrometry (TIMS) U-Pb and electron microprobe data. In: Radiogenic age and isotopic studies, rep 14. Curr Res Geol Surv Can Pap 2001-F1

  • Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238

    CAS  Google Scholar 

  • Stern RA, Shirey SB, Hanson GN (1989) Petrogenesis of mantle derived, LILE enriched Archean monzodiorite and trachyandesite (sanukitoids) in southwestern Superior Province. Can J Earth Sci 26:1688–1712

    CAS  Google Scholar 

  • Stern RA, Percival JA, Mortensen JK (1994) Geochemical evolution of the Minto block: a 2.7 Ga continental magmatic arc built on the Superior craton. Precambrian Res 65:115–153

    CAS  Google Scholar 

  • Stevenson RK, Henry P, Gariepy C (1999) Assimilation–fractional crystallization origin of Archean sanukitoid suites: Western Superior Province, Canada. Precambrian Res 96:83–99

    Article  CAS  Google Scholar 

  • Stott GM (1997) The Superior Province, Canada. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford, UK, Oxford Monogr Geol Geophys 35, pp 480–507

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Thériault R, Chevé S (2000) Géologie de la région du lac Hurault (23L). Minér Ressources Nat Québec RG200-11

  • Thorkelson DJ, Taylor RP (1989) Cordilleran slab windows. Geology 17:833–836

    Article  Google Scholar 

  • Thurston PC, Osmani IA, Stone D (1991) Northwestern Superior Province: review and terrane analysis. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario. Ontario Geol Surv Spec vol 4(1), pp 81–144

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79:375–380

    CAS  Google Scholar 

  • Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107:505–519

    Article  CAS  Google Scholar 

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409:500–504

    CAS  PubMed  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    CAS  Google Scholar 

Download references

Acknowledgements

Pat Hunt is thanked for timely production of SEM images. Alain Leclair and Daniel Lamothe provided geochemical analyses from the lac Bermen area. We thank Joe Whalen for discussions of tonalite petrogenesis and a helpful review. Comments by Gary Beakhouse, Sandrine Cadéron, David Champion and Alain Leclair, as well journal reviewers Fernando Corfu and Sue Mahlburg Kay provided useful insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Percival.

Additional information

Editorial responsibility: T.L. Grove

Appendix

Appendix

Analytical methods

For the SHRIMP study, a 0.5-kg sample of Desliens quartz diorite (G-132; Fig. 3) was crushed and zircon separated by traditional heavy liquid and magnetic separation techniques. Zircons were separated optically into morphologically distinct groups, and 50–200 representatives from the equant and prismatic populations mounted in a 2.5-cm epoxy disk with several grains of BR266 standard zircon (559 Ma; Stern 2001). The mounts were polished with diamond paste to expose grain interiors and coated with a film of 10 nm high-purity gold. Each grain was subsequently imaged on a Cambridge Instruments scanning electron microscope using backscattered electron techniques at magnifications of 150–300.

U–Pb isotopic analyses were carried out on the Geological Survey of Canada sensitive high resolution ion microprobe (SHRIMP II; Stern 1996). Details on laboratory methods and analytical accuracy are presented in Stern (1997). Prior to analysis, selected areas were cleaned of surface common lead by rastering the ion beam for 1 min. Ions were then sputtered off the zircon using a mass-filtered O primary beam. Primary beam currents of 5 nA generated elliptical pits 18 μm long. The analysis duration of about 10 min resulted in ablation pits ~1 μm deep (Stern 1997). Count rates of ten Pb, U, Th and Zr isotopes were measured sequentially in six scans for the unknowns and in-house zircon standard. The single electron multiplier was operated in pulse counting mode; dead time for the ion counting system was 31±1 ns. Bias in the measured 206Pb+/270(UO2)+ ratios was corrected relative to the BR266 zircon standard, for which a linear calibration was established between 206Pb+/270(UO2)+ and 254(UO2)+/238U+. An uncertainty of ±1.4% (1σ) due to calibration of the standard was propagated through to the 206Pb/238U ratios of the unknowns, in addition to counting statistical uncertainty. 207Pb/206Pb values were corrected for a small amount of surface common lead using blank values, and no correction for mass fractionation was applied. Final U–Pb ages for individual spots, calculated using 238U and 235U decay constants of 1.55125×10−10 year−1 and 9.8485×10−10 year−1 respectively (Steiger and Jäger 1977), are reported with 1σ analytical uncertainty in Table 2 and plotted on concordia diagrams with 2σ error ellipses in Figs. 4 and 5, along with BSE images of representative grains. Lower intercept values were not calculated, owing to large errors resulting from the generally concordant nature of the data points (Table 1).

Geochemical data (Table 2) were obtained from whole-rock powders at the Geological Survey of Canada laboratories in Ottawa. Major elements were analysed on fused disks by XRF, and trace elements, including rare earth elements, by ICP-MS. Errors are estimated at ±1% for major elements and ±6% for trace elements. Primitive mantle-normalizing values are from Sun and McDonough (1989).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percival, J.A., Stern, R.A. & Rayner, N. Archean adakites from the Ashuanipi complex, eastern Superior Province, Canada: geochemistry, geochronology and tectonic significance. Contrib Mineral Petrol 145, 265–280 (2003). https://doi.org/10.1007/s00410-003-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0450-5

Keywords

Navigation