Skip to main content
Log in

The bulk electroviscous effect

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Electroviscous stresses arise as hydrodynamic flows disturb the ionic (Debye) clouds that screen charged surfaces in electrolyte solutions. The contribution thereof to the effective bulk viscosity (also known as the second or volume viscosity) of two-phase suspensions is quantified here. Specifically, the bulk viscosity of two model suspensions is calculated: (1) a dilute dispersion of rigid charged spherical particles immersed in a compressible electrolyte that undergoes uniform dilatation and (2) a dilute suspension of charged gas bubbles expanding uniformly in an incompressible electrolyte. In both cases, it is assumed that the fluid flow only slightly drives the Debye cloud out of equilibrium, which formally requires that the ratio of the ion diffusion to flow time scales—a Péclet number—is small. For a suspension of rigid particles, the electroviscous contribution to the effective bulk viscosity is proportional to the particle volume fraction and decreases monotonically as the ratio of the particle radius to the Debye length increases. Similar behavior is well known for the electroviscous contribution to the effective shear viscosity of a dilute hard-sphere suspension; a quantitative comparison between the bulk and shear viscosities is made. In contrast, the electroviscous contribution to the bulk viscosity of a dilute suspension of bubbles is independent of the bubble volume fraction and attains a finite value in the limit of vanishing Debye length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksel N (1995) A model for the bulk viscosity of a non-Newtonian fluid. Contin Mech Thermodyn 7:333–339

    Article  Google Scholar 

  • Allison S, Wall S, Rasmusson M (2003) A general gel layer model for the transport of colloids and macroions in dilute solution. J Colloid Interface Sci 263:84–98

    Article  CAS  Google Scholar 

  • Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  Google Scholar 

  • Batchelor GK, Green JT (1972a) The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J Fluid Mech 56:375–400

    Article  Google Scholar 

  • Batchelor GK, Green JT (1972b) The determination of the bulk stress in a suspension of spherical particles to order c 2. J Fluid Mech 56:401–427

    Article  Google Scholar 

  • Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  Google Scholar 

  • Baygents JC, Saville DA (1991) Electrophoresis of drops and bubbles. J Chem Soc Faraday Trans 87:1883–898

    Article  CAS  Google Scholar 

  • Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157

    Article  Google Scholar 

  • Brady JF, Khair AS, Swaroop M (2006) On the bulk viscosity of suspensions. J Fluid Mech 554:109–123

    Article  Google Scholar 

  • Booth F (1950) The electroviscous effect for suspensions of solid spherical particles. Proc Roy Soc A 203:533–551

    Article  CAS  Google Scholar 

  • Chen HS, Acrivos A (1978) The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int J Solids Struc 14:349–364

    Article  Google Scholar 

  • Davies RO (1954) A note on Sir Geoffrey Taylor’s paper. Proc Roy Soc A 226:39

    Article  CAS  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 19:289–306

    Article  CAS  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: ‘Eine neue Bestimmung der Moleküldimensionen. Ann Phys 34:591–592

    Article  CAS  Google Scholar 

  • Fair MC, Anderson JL (1989) Electrophoresis of non uniformly charged ellipsoidal particles. J Colloid Interface Sci 127:388–400

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York

    Google Scholar 

  • Jeffrey GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc Roy Soc A 102:161–179

    Article  Google Scholar 

  • Khair AS (2006) The ‘Einstein correction’ to the bulk viscosity in n dimensions. J Colloid Interface Sci 302:702–703

    Article  CAS  Google Scholar 

  • Krasny-Ergen W (1936) Untersuchungen über die viskosität von suspensionen und lösungen. 2. Zur theorie der elektroviskosität. Kolloid Z 74:172–178

    Article  CAS  Google Scholar 

  • Koch DL, Subramanian G (2006) The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J Non-Newton. Fluid Mech 138:87–97

    Article  CAS  Google Scholar 

  • Ladd AJC (1990) Hydrodynamic transport coefficients of random dispersions of hard spheres. J Chem Phys 93:3484–3494

    Article  CAS  Google Scholar 

  • Lensky NG, Lyakhovksy V, Navon O (2002) Expansion dynamics of volatile-supersaturated liquids and bulk viscosity of bubbly magmas. J Fluid Mech 460:39–56

    Article  CAS  Google Scholar 

  • Lever DA (1979) Large distortion of the electric double layer around a charged particle by a shear flow. J Fluid Mech 92:421–433

    Article  Google Scholar 

  • Natraj V, Chen SB (2002) Primary electroviscous effect in a suspension of charged porous spheres. J Colloid Interface Sci 251:200–207

    Article  CAS  Google Scholar 

  • Ohshima H, Healey TW, White LR, and O’Brien RW (1984) Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J Chem Soc Faraday Trans 2(80):1299–1317

    Google Scholar 

  • Ohshima H (2006) Primary electroviscous effect in a dilute suspension of charged mercury drops. Langmuir 22:2863–2869

    Article  CAS  Google Scholar 

  • Oldroyd JG (1954) Note on the hydrodynamic and thermodynamic pressures. Proc Roy Soc A 226:57–58

    Article  Google Scholar 

  • Prud’homme RK, Bird RB (1978) The dilatational properties of suspensions of gas bubbles in incompressible Newtonian and non-Newtonian fluids. J Non-Newtonian Fluid Mech 3:261–279

    Article  Google Scholar 

  • Rallison JM (2012) The stress in a dilute suspension of liquid spheres in a second-order fluid. J Fluid Mech 693:500–507

    Article  Google Scholar 

  • Russel WB (1976) Low-shear limit of the secondary electroviscous effect. J Colloid Interface Sci 55:590–604

    Article  Google Scholar 

  • Russel WB (1978a) The rheology of suspensions of charged rigid spheres. J Fluid Mech 85:209–232

    Article  CAS  Google Scholar 

  • Russel WB (1978b) Bulk stresses due to deformation of the electrical double layer around a charged sphere. J Fluid Mech 85:673–683

    Article  Google Scholar 

  • Sherwood JD (1980) The primary electroviscous effect in a suspension of spheres. J Fluid Mech 101:609–629

    Article  Google Scholar 

  • Sherwood JD (1981) The primary electroviscous effect in a suspension of rods. J Fluid Mech 111:347–366

    Article  CAS  Google Scholar 

  • von Smoluchowski M (1916) Theoretische Bemerkungen über die Viskosität der Kolloide. Kolloid Z 18:190–195

    Article  Google Scholar 

  • Swaroop M, Brady JF (2007) The bulk viscosity of suspensions. J Rheol 51:409–428

    Article  CAS  Google Scholar 

  • Swaroop M (2010) The bulk viscosity of suspensions. Dissertation, California Institute of Technology.

  • Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc Roy Soc A 138:41–48

    Article  CAS  Google Scholar 

  • Taylor GI (1954a) The two coefficients of viscosity for an incompressible fluid containing air bubbles. Proc Roy Soc A 226:34–37

    Article  CAS  Google Scholar 

  • Taylor GI (1954b) Note on the volume viscosity of water containing bubbles. Proc Roy Soc A 226:38–39

    Article  CAS  Google Scholar 

  • Watterson IG, White LR (1981) Primary electroviscous effect in suspensions of charged spherical particles. J Chem Soc Faraday Trans 2(77):1115–1128

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Department of Chemical Engineering at Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya S. Khair.

Additional information

Special issue devoted to novel trends in rheology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khair, A.S., Star, A.G. The bulk electroviscous effect. Rheol Acta 52, 255–269 (2013). https://doi.org/10.1007/s00397-012-0662-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0662-6

Keywords

Navigation