Skip to main content
Log in

Comparison of modification of diet in renal disease and chronic kidney disease epidemiology collaboration formulas in predicting long-term outcomes in patients undergoing stent implantation due to stable coronary artery disease

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

The aim was to assess the predictive value of estimated glomerular filtration rate (eGFR) using two formulas: modification of diet in renal disease (MDRD) and chronic kidney disease epidemiology collaboration (CKD-EPI), in a population with stable coronary artery disease (SCAD) undergoing percutaneous coronary revascularization (PCI).

Methods

The analyzed cohort included 3,141 consecutive patients with SCAD who underwent PCI, between January 2006 and December 2011. Follow-up data were available for 3,123 (99.4 %) patients.

Results

The median follow-up was 1,127 days (interquartile range 566–1,634 days). During the observation period, 330 deaths were reported. In patients with serum creatinine (S-Cr) within normal range, eGFR by CKD-EPI equation predicted long-term outcome more accurately, than eGFR by MDRD formula—continuous Net Reclassification Improvement: 0.296 (95 % CI, 0.08–0.5 p = 0.03). In patients with elevated S-CR, eGFR calculated by both formulae had similar efficacy in assessing death risk. After adjustment for differences in clinical characteristics, both formulae were associated with mortality, but only in patients with elevated S-Cr: eGFR by MDRD (per 10 ml/min/1.73 m2) HR: 0.74 [95 % CI, 0.61–0.89, p = 0.002], eGFR by CKD-EPI (per 10 ml/min/1.73 m2) HR: 0.75 (95 % CI, 0.63–0.89, p = 0.001). After adjustment for covariates, eGFR by CKD-EPI equation did not offer more appropriate categorization of individuals with respect to long-term mortality.

Conclusion

Our results indicate that in multivariable analysis eGFR calculated by MDRD and CKD-EPI equations has similar predictive value. In a population of patients with SCAD and S-Cr within normal range, eGFR calculated by CKD-EPI equation outperforms eGFR calculated by MDRD equation in assessing death risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coceani M, Carpeggiani C, L’Abbate A (2008) Comparative prognostic value of glomerular filtration rate estimating formulas in ischaemic heart disease. Eur J Cardiovasc Prev Rehabil 15:423–427

    Article  PubMed  Google Scholar 

  2. Kasai T, Miyauchi K, Kajimoto K, Kubota N, Dohi T, Tsuruta R et al (2011) Prognostic significance of glomerular filtration rate estimated by the Japanese equation among patients who underwent complete coronary revascularization. Hypertens Res 34:378–383

    Article  CAS  PubMed  Google Scholar 

  3. Di Angelantonio E, Chowdhury R, Sarwar N, Aspelund T, Danesh J, Gudnason V (2010) Chronic kidney disease and risk of major cardiovascular disease and non-vascular mortality: prospective population based cohort study. BMJ 341:c4986

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gibson CM, Dumaine RL, Gelfand EV, Murphy SA, Morrow DA, Wiviott SD et al (2004) Association of glomerular filtration rate on presentation with subsequent mortality in non-ST-segment elevation acute coronary syndrome; observations in 13,307 patients in five TIMI trials. Eur Heart J 25:1998–2005

    Article  PubMed  Google Scholar 

  5. Gruberg L, Weissman NJ, Waksman R, Laird JR, Pinnow EE, Wu H et al (2002) Comparison of outcomes after percutaneous coronary revascularization with stents in patients with and without mild chronic renal insufficiency. Am J Cardiol 89:54–57

    Article  PubMed  Google Scholar 

  6. Weiner DE, Tabatabai S, Tighiouart H, Elsayed E, Bansal N, Griffith J et al (2006) Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease. Am J Kidney Dis 48:392–401

    Article  PubMed  Google Scholar 

  7. Kuchulakanti PK, Torguson R, Chu WW, Canos DA, Rha S, Clavijo L et al (2006) Impact of chronic renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary intervention with sirolimus-eluting stents versus bare metal stents. Am J Cardiol 97:792–797

    Article  CAS  PubMed  Google Scholar 

  8. Best PJM, Berger PB, Davis BR, Grines CL, Sadeghi HM, Williams BA et al (2004) Impact of mild or moderate chronic kidney disease on the frequency of restenosis: results from the PRESTO trial. J Am Coll Cardiol 44:1786–1791

    PubMed  Google Scholar 

  9. Yazaki Y, Iijima R, Nakamura M, Sugi K (2011) Relationship between renal function stage and clinical outcomes after paclitaxel-eluting stent implantation. J Cardiol 57:61–68

    Article  PubMed  Google Scholar 

  10. Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P et al (2003) Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124:91–96

    Article  PubMed  Google Scholar 

  11. Botev R, Mallié J-P, Couchoud C, Schück O, Fauvel J-P, Wetzels JFM et al (2009) Estimating glomerular filtration rate: Cockcroft-Gault and Modification of Diet in Renal Disease formulas compared to renal inulin clearance. Clin J Am Soc Nephrol 4:899–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. K/DOQI (2002) Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(Suppl 1):S1–S266

    Google Scholar 

  13. Section I (2002) Measurement of renal function, when to refer and when to start dialysis. Nephrol Dial Transplant 17(Suppl 7):7–15

    Google Scholar 

  14. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038–2047

    Article  CAS  PubMed  Google Scholar 

  15. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW et al (2007) Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 53:766–772

    Article  CAS  PubMed  Google Scholar 

  16. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bell RM, Rear R, Cunningham J, Dawnay A, Yellon DM (2014) Effect of remote ischaemic conditioning on contrast-induced nephropathy in patients undergoing elective coronary angiography (ERICCIN): rationale and study design of a randomised single-centre, double-blind placebo-controlled trial. Clin Res Cardiol 103(3):203–209. doi:10.1007/s00392-013-0637-3

  18. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F et al (2006) Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol 98:5K–13K

    Article  CAS  PubMed  Google Scholar 

  19. Estimating Glomerular Filtration Rate (GFR)—National Kidney Disease Education Program (NKDEP). http://nkdep.nih.gov/lab-evaluation/gfr/estimating.shtml. Accessed 20 Jan 2014

  20. Kirsztajn GM, Suassuna JHR, Bastos MG (2009) Dividing stage 3 of chronic kidney disease (CKD): 3A and 3B. Kidney Int 76:462–463 (author reply 463–464)

    Article  PubMed  Google Scholar 

  21. Stekhoven DJ, Bühlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118

    Article  CAS  PubMed  Google Scholar 

  22. Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, Marrero J, Zhu J, Higgins PD (2013) Comparison of imputation methods for missing laboratory data in medicine. BMJ Open 3(8). doi:10.1136/bmjopen-2013-002847

  23. Stekhoven DJ (2013) MissForest: nonparametric missing value imputation using random forest. R package version. 1.4

  24. Newson RB (2010) Comparing the predictive power of survival models using Harrell’ s C or Somers’. Stata J 3:339–358

    Google Scholar 

  25. Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115:928–935

    Article  PubMed  Google Scholar 

  26. Pencina MJ, D’Agostino RB, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21

    Article  PubMed Central  PubMed  Google Scholar 

  27. Uno H, Tian L, Cai T, Kohane IS, Wei LJ (2013) A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med 32:2430–2442

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pickering JW, Endre ZH (2012) New metrics for assessing diagnostic potential of candidate biomarkers. Clin J Am Soc Nephrol 7:1355–1364

    Article  PubMed  Google Scholar 

  29. R Core Team (2013) R: a language and environment for statistical computing

  30. Choi JS, Kim CS, Park JW, Bae EH, Ma SK, Jeong MH et al (2012) Renal dysfunction as a risk factor for painless myocardial infarction: results from Korea Acute Myocardial Infarction Registry. Clin Res Cardiol 101:795–803

    Article  PubMed  Google Scholar 

  31. Ndrepepa G, Neumann F-J, Cassese S, Fusaro M, Ott I, Schulz S et al (2014) Incidence and impact on prognosis of bleeding during percutaneous coronary interventions in patients with chronic kidney disease. Clin Res Cardiol 103:49–56

    Article  PubMed  Google Scholar 

  32. Manjunath G, Tighiouart H, Ibrahim H, MacLeod B, Salem DN, Griffith JL et al (2003) Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 41:47–55

    Article  PubMed  Google Scholar 

  33. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  34. Weiner DE, Tighiouart H, Amin MG, Stark PC, MacLeod B, Griffith JL et al (2004) Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol 15:1307–1315

    Article  PubMed  Google Scholar 

  35. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP et al (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107:87–92

    Article  CAS  PubMed  Google Scholar 

  36. Keller C, Katz R, Cushman M, Fried LF, Shlipak M (2008) Association of kidney function with inflammatory and procoagulant markers in a diverse cohort: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Nephrol 9:9

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bramlage P, Cuneo A, Zeymer U, Hochadel M, Richardt G, Silber S et al (2013) Prognosis of patients with atrial fibrillation undergoing percutaneous coronary intervention receiving drug eluting stents. Clin Res Cardiol 102:289–297

    Article  CAS  PubMed  Google Scholar 

  38. Arnaudis B, Lairez O, Escamilla R, Fouilloux A, Fournier P, Monteil B et al (2012) Impact of chronic obstructive pulmonary disease severity on symptoms and prognosis in patients with systolic heart failure. Clin Res Cardiol 101:717–726

    Article  PubMed  Google Scholar 

  39. Kuznik A, Mardekian J, Tarasenko L (2013) Evaluation of cardiovascular disease burden and therapeutic goal attainment in US adults with chronic kidney disease: an analysis of national health and nutritional examination survey data, 2001–2010. BMC Nephrol 14:132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ndrepepa G, Tada T, Fusaro M, Cassese S, King L, Hadamitzky M et al (2012) Association of coronary atherosclerotic burden with clinical presentation and prognosis in patients with stable and unstable coronary artery disease. Clin Res Cardiol 101:1003–1011

    Article  PubMed  Google Scholar 

  41. Botev R, Mallié J-P (2008) Reporting the eGFR and its implication for CKD diagnosis. Clin J Am Soc Nephrol 3:1606–1607

    Article  PubMed  Google Scholar 

  42. Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J (2010) Risk implications of the new CKD epidemiology collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 55:648–659

    Article  PubMed Central  PubMed  Google Scholar 

  43. Skali H, Uno H, Levey AS, Inker LA, Pfeffer MA, Solomon SD (2011) Prognostic assessment of estimated glomerular filtration rate by the new chronic kidney disease epidemiology collaboration equation in comparison with the Modification of Diet in Renal Disease Study equation. Am Heart J 162:548–554

    Article  PubMed  Google Scholar 

  44. Ohsawa M, Tanno K, Itai K, Turin TC, Okamura T, Ogawa A et al (2013) Comparison of predictability of future cardiovascular events between chronic kidney disease (CKD) stage based on CKD epidemiology collaboration equation and that based on modification of diet in renal disease equation in the Japanese general population–I. Circ J 77:1315–1325

    Article  PubMed  Google Scholar 

  45. Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R, Polkinghorne KR et al (2013) Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 369:932–943

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The creation of the database of patients with stable coronary artery disease used in this study was supported by the National Science Center—Dec-2011/01/D/NZ5/04387. Study was approved by ethics committee at district chamber of physicians.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Osadnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osadnik, T., Wasilewski, J., Lekston, A. et al. Comparison of modification of diet in renal disease and chronic kidney disease epidemiology collaboration formulas in predicting long-term outcomes in patients undergoing stent implantation due to stable coronary artery disease. Clin Res Cardiol 103, 569–576 (2014). https://doi.org/10.1007/s00392-014-0687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0687-1

Keywords

Navigation