Skip to main content
Log in

Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A comprehensive study of three normal mode travelling planetary waves, namely the quasi-16, -10 and -5 day waves, is carried out globally using 5 years (2003–2007) of TIMED/SABER temperature measurements from the stratosphere to the mesosphere-lower thermosphere (MLT) by employing the two dimensional Fourier decomposition technique. From preliminary analysis, it is found that significant amplitudes of normal modes are confined to wave numbers-2 (westward propagating modes) to 2 (eastward propagating modes). The westward propagating quasi 16-day waves with zonal wave number 1 (W1; W1 refers to westward propagating wave with zonal wave number 1) peaks over winter-hemispheric high latitudes with northern hemisphere (NH) having higher amplitudes as compared to their southern hemispheric (SH) counterpart. The W1 quasi 16-day waves exhibit a double peak structure in altitude over winter hemispheric high latitudes. The eastward propagating quasi 16-day waves with wave number 1 (E1; E1 refers to eastward propagating wave with zonal wave number 1) exhibits similar features as that of W1 waves in the NH. In contrast, the E1 quasi 16-day waves in the SH show larger amplitudes as compared to the W1 waves and they do not exhibit double peak structure in altitude. Similar to the quasi 16-day waves, the quasi 10- and 5-day wave amplitudes with respect to their wavenumbers are delineated. Unlike quasi-16 and -10 day waves, quasi-5 day waves peak during vernal equinox both in the SH and NH. The peak activity of the W1 quasi-5 day wave is centered around 40°N and 40°S exhibiting symmetry with respect to the equator. A detailed discussion on the height-latitude structure, interannual variability and inter-hemispheric propagation of quasi 16-, 10- and 5-day waves are discussed. The significance of the present study lies in establishing the 5-year climatology of normal mode planetary waves from the stratosphere to the MLT region including their spatial–temporal evolution, which are very important from the middle atmospheric dynamics standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babu VS, Kumar KK, John SR, Subrahmanyam KV, Ramkumar G (2011) Meteor radar observations of short-term variability of quasi 2-day waves and their interaction with tides/planetary waves in the mesosphere-lower thermosphere region over thumba (8.5°N, 77°E). J Geophys Res 116:D16121. doi:10.1029/2010JD015390

    Article  Google Scholar 

  • Babu VS, Ramkumar G, John SR (2012) Seasonal variation of planetary wave momentum flux and its forcing towards the mean flow acceleration in the MLT region. J Atmos Sol Terr Phys 78–79:53–61

    Article  Google Scholar 

  • Bretherton FP (1969) Lamb waves in a nearly isothermal atmosphere. Q J R Meteorol Soc 95:754–757

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from lower into the upper atmosphere. J Geophys Res 66:83–109

    Article  Google Scholar 

  • Chshyolkova T, Manson AH, Meek CE, Avery SK, Thorsen D, MacDougall JW, Hocking W, Murayama Y, Igarashi K (2005) Planetary wave coupling in the middle atmosphere (20–90 km): a CUJO study involving TOMS, MetO and MF radar data. Ann Geophys 23:1103–1121

    Article  Google Scholar 

  • Chshyolkova T, Manson AH, Meek CE, Avery SK, Thorsen D, MacDougall JW, Hocking W, Murayama Y, Igarashi K (2006) Planetary wave coupling processes in the middle atmosphere (30–90 km): a study involving MetO and MF radar data. J Atmos Sol Terr Phys 68:353–368

    Article  Google Scholar 

  • Das SS, Kumar KK, Veena SB, Ramkumar G (2010) Simultaneous observation of quasi 16-day wave in the mesospheric winds and temperature over low-latitudes with the SKiYMET radar. Radio Sci 45:RS6014. doi:10.1029/2009RS004300

    Google Scholar 

  • Day KA, Mitchell NJ (2010a) The 16-day wave in the Arctic and Antarctic mesosphere and lower thermosphere. Atmos Chem Phys 10(1461–1472):2010

    Google Scholar 

  • Day KA, Mitchell NJ (2010b) The 5-day wave in the Arctic and Antarctic mesosphere and lower thermosphere. J Geophys Res 115:D01109. doi:10.1029/2009JD012545

    Article  Google Scholar 

  • Day KA, Hibbins RE, Mitchell NJ (2011) Aura MLS observations of the westward-propagating s = 1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere. Atmos Chem Phys 11(4149–4161):2011. doi:10.5194/acp-11-4149-2011

    Google Scholar 

  • Forbes JM, Hagan ME, Miyahara S, Vial F, Mason AH, Meek CE, Portnyagin YI (1995) Quasi 16-day oscillation in the mesosphere and lower thermosphere. J Geophys Res 100:9149–9163

    Article  Google Scholar 

  • Forbes JM, Palo SE, Zhang X, Makarov NA, Merzlyakov EG, Portnyagin YuI (1999) Lamb waves in the lower thermosphere: observational evidence and global consequences. Geophys Res 104:17107–17115

    Article  Google Scholar 

  • Garcia RR, Lieberman R, Russell JM, Mlynczak MG (2005) Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J Atmos Sci 62(12):4384–4399

    Article  Google Scholar 

  • Hartmann DL, Mechoso CR, Yamazaki K (1984) Observations of wave mean flow interaction in the southern hemisphere. J Atmos Sci 41(3):351–362

    Article  Google Scholar 

  • Hirooka T (2000) Normal mode rossby waves as revealed by UARS/ISAMS observations. J Atmos Sci 57:1277–1285

    Article  Google Scholar 

  • Jiang G et al (2008) A case study of the mesospheric 6.5-day wave observed by radar systems. J Geophys Res 113:D16111. doi:10.1029/2008JD009907

    Article  Google Scholar 

  • John SR, Kumar KK (2012) TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Clim Dyn. doi:10.1007/s00382-012-1329-9

    Google Scholar 

  • Kingsley SP, Muller HG, Nelson L, Scholefield A (1978) Meteor winds over Sheffield (53°N, 2°W). J Atmos Terr Phys 40:917–922

    Article  Google Scholar 

  • Kirkwood S, Barabash V, Brändström BUE, Moström A, Stebel K, Mitchell N, Hocking W (2002) Noctilucent clouds, PMSE and 5-day planetary waves: a case study. Geophys Res Lett 29(10):1411. doi:10.1029/2001GL014022

    Article  Google Scholar 

  • Kishore Kumar G, Venkat Ratnam M, Patra AK, Vijaya Bhaskara Rao S, Russell J (2008) Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations. J Geophys Res 113:D23106. doi:10.1029/2008JD010511

    Article  Google Scholar 

  • Lima LM, Batista PP, Clemasha BR, Takahashi H (2006) 16-day wave observed in the meteor winds at low latitudes in the southern hemisphere. Adv Space Res 38:2615–2620

    Article  Google Scholar 

  • Lindzen RS, Blake D (1972) Lamb waves in the presence of realistic distributions of temperature and dissipation. J Geophys Res 77(12):2166–2176

    Article  Google Scholar 

  • Luo Y, Manson AH, Meek CE, Meyer CK, Forbes JM (2000) The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980–1996. J Geophys Res 105(D2):2125–2138

    Article  Google Scholar 

  • Luo Y, Manson AH, Meek CE, Meyer CK, Forbes JM, Burrage MD, Fritts DC, Hall CM, Hocking WK, MacDougall J, Riggin DM, Vincent RA (2002) The 16-day planetary waves: multi-MF radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results. Ann Geophys 20:691–709; SRef-ID: 1432-0576/ag/2002-20-691

  • Madden RA (1979) Observations of large-scale traveling Rossby waves. Rev Geophys 17(8):1935–1950

    Article  Google Scholar 

  • Manson AH, Meek CE, Luo Y, Hocking WK, MacDougall J, Riggin D, Fritts DC, Vincent RA (2003) Modulation of gravity waves by planetary waves (2 and 16 d): observations with the North American-Pacific MLT—MFR radar network. J Atmos Sol Terr Phys 65:85–104

    Article  Google Scholar 

  • McDonald AJ, Hibbins RE, Jarvis MJ (2011) Properties of the quasi 16 day wave derived from EOS MLS observations. J Geophys Res 116:D06112. doi:10.1029/2010JD014719

    Article  Google Scholar 

  • Merkel WA, Thomas GE, Palo SE, Bailey SM (2003) Observations of the 5-day planetary wave in PMC measurements from the student nitric oxide explorer satellite. Geophys Res Lett 30(4):1196. doi:10.1029/2002GL01652

    Article  Google Scholar 

  • Mertens CJ, Mlynczak MG, López-Puertas M, Wintersteiner PP, Picard RH, Winick JR, Gordley LL, Russell JM III (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys Res Lett 28(7):1391–1394

    Article  Google Scholar 

  • Mitchell NJ, Middleton HR, Beard AG, Williams PJS, Muller HG (1999) The 16-day planetary wave in the mesosphere and lower thermosphere. Ann Geophys 17:1447–1456

    Article  Google Scholar 

  • Miyahara S, Portnyagin YI, Forbes JM, Solovjeva TV (1991) Mean zonal acceleration and heating of the 70- to 100-km region. J Geophys Res 96:1225–1238

    Article  Google Scholar 

  • Miyoshi Y (1999) Numerical simulation of the 5-day and 16-day waves in the mesopause region. Earth Planet Space 51(7–8):763–784

    Article  Google Scholar 

  • Miyoshi Y, Hirooka T (1999) A numerical experiment of excitation of the 5-day wave by a GCM. J Atmos Sci 56:1698–1707

    Article  Google Scholar 

  • Mukhtarov P, Pancheva D, Andonov B (2010) Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002–2007). J Geophys Res 115:A06315. doi:10.1029/2009JA015156

    Article  Google Scholar 

  • Muller HG (1972) Long-period meteor wind oscillations. Philos Trans R Soc Lond Ser A 271:585–598

    Article  Google Scholar 

  • Nielsen K, Siskind DE, Eckermann SD, Hoppel KW, Coy L, McCormack JP, Benze S, Randall CE, Hervig ME (2010) Seasonal variation of the quasi 5 day planetary wave: causes and consequences for polar mesospheric cloud variability in 2007. J Geophys Res 115:D18111. doi:10.1029/2009JD012676

    Article  Google Scholar 

  • Palo SE, Forbes JM, Zhang X, Russell JM, Mertens CJ, Mlynczak MG, Burns GB, Espy PJ, Kawahara TD (2005) Planetary wave coupling from the stratosphere to the thermosphere during the 2002 southern hemisphere pre-stratwarm period. Geophys Res Lett 32:L23809. doi:10.1029/2005GL024298

    Article  Google Scholar 

  • Pancheva DV, Mitchell NJ (2004) Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68°N, 21°E) during winter. J Geophys Res 109:A08307. doi:10.1029/2004JA010433

    Article  Google Scholar 

  • Pancheva D et al (2008) Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J Geophys Res 113:D12105. doi:10.1029/2007JD009011

    Article  Google Scholar 

  • Pancheva D, Mukhtarov P, Andonov B, Mitchell NJ, Forbes JM (2009a) Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere lower thermosphere during the winter of 2003/2004: part 1—comparison with the UKMO temperature results. J Atmos Sol Terr Phys 71:61–74

    Article  Google Scholar 

  • Pancheva D, Mukhtarov P, Andonov B, Mitchell NJ, Forbes JM (2009b) Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: part 2—altitude and latitude planetary wave structure. J Atmos Solar Terr Phys 71:75–87

    Article  Google Scholar 

  • Park Y-H, Roquet F, Vivier F (2004) Quasi-stationary enso wave signals versus the antarctic circumpolar wave scenario. Geophys Res Lett 31:L09315

    Google Scholar 

  • Remsberg E, Lingenfelser G, Harvey VL, Grose W, Russell J III, Mlynczak M, Gordley L, Marshall BT (2003) On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J Geophys Res 108(D20):4628. doi:10.1029/2003JD003720

    Article  Google Scholar 

  • Riggin DM et al (2006) Observations of the 5-day wave in the mesosphere and lower thermosphere. J Atmos Sol Terr Phys 68:323–339. doi:10.1016/j.jastp.2005.05.010

    Article  Google Scholar 

  • Salby ML (1984) Survey of planetary-scale travelling waves: the state of theory and observations. Rev Geophys Space Phys 22(2):209–236

    Article  Google Scholar 

  • Smith AK (1996) Longitudinal variations in mesospheric winds: evidence for gravity wave filtering by planetary waves. J Atmos Sci 53:1156–1173

    Article  Google Scholar 

  • Ushimaru S, Tanaka H (1992) A numerical study of the interaction between stationary rossby waves and eastward-traveling waves in the southern-hemisphere stratosphere. J Atmos Sci 49(15):1354–1373

    Article  Google Scholar 

  • Volland H (1988) Atmospheric tidal and planetary waves. Kluwer, Norwell

    Book  Google Scholar 

  • von Savigny C, Robert C, Bovensmann H, Burrows JP, Schwartz M (2007) Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures. Geophys Res Lett 34:L24808. doi:10.1029/2007GL030987

    Article  Google Scholar 

  • Williams CR, Avery SK (1992) Analysis of long-period waves using the mesosphere–stratosphere–troposphere radar at Poker Flat, Alaska. J Geophys Res 97(D18):855–861

    Article  Google Scholar 

  • Wu DL, Hays PB, Skinner WR (1994) Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys Res Lett 21(24):2733–2736

    Article  Google Scholar 

Download references

Acknowledgments

Sherine Rachel John gratefully acknowledges the financial support and research opportunity provided by ISRO for her work. The authors are thankful to the TIMED/SABER team and the MERRA data team for the freely downloadable data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karanam Kishore Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, S.R., Kumar, K.K. Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere. Clim Dyn 47, 3863–3881 (2016). https://doi.org/10.1007/s00382-016-3046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3046-2

Keywords

Navigation