Skip to main content

Advertisement

Log in

Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Due to inherent limitations in climate models, their output is biased in relation to observed climate and as such does not provide reliable climate projections. In this study, nine methods used to account for biases in daily precipitation are tested. First, cross-validation tests were made using a set of ENSEMBLES regional model simulations to gain insights in the potential performance of the methods in the future climate. The results show that quantile mapping type methods, being able to modify the shape of the precipitation distribution, often outperform other types of methods. Yet, as the performance depends on time of the year, location and part of the distribution considered, it is not possible to distinguish one universally best performing method. In addition, the improvement relative to the projections that would have been obtained assuming unchanged climate is relatively modest, particularly in the early twentyfirst century conditions. Further tests with different method combinations show that the projections could be potentially improved by using several well performing methods in parallel. In the second part of the study, contributions of method and model differences to the overall variation of precipitation projections are assessed. It is shown that although intermodel differences play an important role, uncertainties related to intermethod differences are substantial, particularly in the tails of the distribution. This suggests that method uncertainty should be taken into account when constructing daily precipitation projections, possibly by using several methods in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aryan VE, Albert KT, Gerard VDS, Lisette K (2008) European Climate Assessment and Dataset (ECA&D): towards an operational system for assessing observed changes in climate extremes. Technical report, KNMI, p 68

  • Bàrdossy A, Pegram G (2013) Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small. Water Resour Res 48:W09502. doi:10.1029/2011WR011524

    Google Scholar 

  • Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi:10.1007/s00382-009-0683-8

    Article  Google Scholar 

  • Bracegirdle T, Stephenson D (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim Dyn 39:2805–2821. doi:10.1007/s00382-012-1330-3

    Article  Google Scholar 

  • Buser CM, Künch HR, Lüthi D, Wild M, Schär C (2009) Bayesian multimodel projection of climate: bias assumptions and interannual variability. Clim Dyn 33:849–868. doi:10.1007/s00382-009-0588-6

    Article  Google Scholar 

  • Chen J, Brissette P, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205. doi:10.1002/wrcr.20331

    Article  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  • Déqué M, Somot S, Sanchez-Gomez E, Goodess CM, Jacob D, Lederink G, Christensen OB (2010) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi:10.1007/s00382-011-1053-x

    Article  Google Scholar 

  • Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116:D16106. doi:10.1029/2011JD015934

    Article  Google Scholar 

  • Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact modelers: analysis of the climate change signal. J Geophys Res 117:D17110. doi:10.1029/2012JD017968

    Google Scholar 

  • Engen-Skaugen T (2007) Refinement of dynamically downscaled precipitation and temperature scenarios. Clim Change 84:365–382. doi:10.1007/s10584-007-9251-6

    Article  Google Scholar 

  • Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction of climate projections for crop modeling: an idealized case study over Europe. Agric For Meteorol 170:19–31

    Article  Google Scholar 

  • Johnson F, Sharma A (2012) A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour Res 48:W01504. doi:10.1029/2011WR010464

    Google Scholar 

  • Lafon T, Dadson S, Buys G, Prudhomme C (2013) Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int J Climatol 33:1367–1381. doi:10.1002/joc.3518

    Article  Google Scholar 

  • Leander RT, Buishand A (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332:487–496

    Article  Google Scholar 

  • Maraun D (2012) Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys Res Lett 39:L06706. doi:10.1029/2012GL051210

    Article  Google Scholar 

  • Maraun D (2013a) When will trends in European mean and heavy precipitation emerge? Environ Res Lett 8:1–7. doi:10.1088/1748-9326/8/1/014004

    Article  Google Scholar 

  • Maraun D (2013b) Bias correction, quantile mapping, and downscaling: revising the inflation issue. J Clim 26:2137–2143. doi:10.1175/JCLI-D-12-00821.1

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • Nakićenović N, Alcamo J, Davis J, de Vries B, Fenhann J, Gaffin S, Gregory K, Gr-übler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emission scenarios. A special report of Working Group III for the Intergovernmental Panel on Climate Change. Cambridge university press, New York

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J Clim 20:4356–4376. doi:10.1175/JCLI4253.1

    Article  Google Scholar 

  • Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39:L20401. doi:10.1029/2012GL053839

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010a) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Piani C, Weedom GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010b) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • Räisänen J, Räty O (2013) Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations. Clim Dyn 41:1553–1568. doi:10.1007/s00382-012-1515-9

    Article  Google Scholar 

  • Terink W, Hurkmans RTW, Torfs PJJ, Uijlenhoet R (2010) Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrol Earth Syst Sci 14:687–703. doi:10.5194/hess-14-687-2010

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.hydrol.2012.05.052

    Article  Google Scholar 

  • Themeβl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. doi:10.1002/joc.2168

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary and results from ENSEMBLES project. Met Office Hadley Centre, Fitzroy Road, Exeter EX 1 3 PB, UK, p 160

  • Watanabe S, Kanae S, Seto S, Yeh PJF, Hirabayashi Y, Oki T (2012) Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple models. J Geophys Res 117:D23114. doi:10.1029/2012JD018192

    Article  Google Scholar 

  • Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Change 120:871–887. doi:10.1007/s10584-013-0845-x

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Elsevier, Burlington, p 627

    Google Scholar 

  • Yang W, Andréasson J, Graham LP, Olsson J, Rosberg J, Wetterhall F (2010) Distribution-based scaling to improve the usability of regional climate model projections for hydrological climate change impacts studies. Hydrol Res 41(3–4):211–229

    Article  Google Scholar 

  • Yip S, Ferro CAT, Stephenson DB, Hawkins E (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim 24(17):4636–4643. doi:10.1175/2011JCLI4085.1

    Article  Google Scholar 

Download references

Acknowledgments

The model simulations used in this work were funded by the EU FP6 Integrated Project ENSEMBLES (Contract Number 505539). This study has been supported by the Academy of Finland RECAST project (Decision 140801) and the Academy of Finland Center of Excellence program (Project No. 272041). The authors thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olle Räty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Räty, O., Räisänen, J. & Ylhäisi, J.S. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Clim Dyn 42, 2287–2303 (2014). https://doi.org/10.1007/s00382-014-2130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2130-8

Keywords

Navigation