Skip to main content

Advertisement

Log in

Comparison of statistically downscaled precipitation in terms of future climate indices and daily variability for southern Ontario and Quebec, Canada

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Given the coarse resolution of global climate models, downscaling techniques are often needed to generate finer scale projections of variables affected by local-scale processes such as precipitation. However, classical statistical downscaling experiments for future climate rely on the time-invariance assumption as one cannot know the true change in the variable of interest, nor validate the models with data not yet observed. Our experimental setup involves using the Canadian regional climate model (CRCM) outputs as pseudo-observations to estimate model performance in the context of future climate projections by replacing historical and future observations with model simulations from the CRCM, nested within the domain of the Canadian global climate model (CGCM). In particular, we evaluated statistically downscaled daily precipitation time series in terms of the Peirce skill score, mean absolute errors, and climate indices. Specifically, we used a variety of linear and nonlinear methods such as artificial neural networks (ANN), decision trees and ensembles, multiple linear regression, and k-nearest neighbors to generate present and future daily precipitation occurrences and amounts. We obtained the predictors from the CGCM 3.1 20C3M (1971–2000) and A2 (2041–2070) simulations, and precipitation outputs from the CRCM 4.2 (forced with the CGCM 3.1 boundary conditions) as predictands. Overall, ANN models and tree ensembles outscored the linear models and simple nonlinear models in terms of precipitation occurrences, without performance deteriorating in future climate. In contrast, for the precipitation amounts and related climate indices, the performance of downscaling models deteriorated in future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benestad RE, Chen D, Hanssen-Bauer I (2008) Empirical-statistical downscaling. World Scientific, Singapore

    Book  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Cambridge

    Google Scholar 

  • Bourdages L, Huard D (2010) Climate change scenario over Ontario based on the Canadian regional climate model (CRCM4.2). Ouranos, Montreal

    Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Google Scholar 

  • Bronaugh D (2012) PCIC implementation of Climdex routines. version 0.4–1. Victoria, BC. http://cran.r-project.org/web/packages/climdex.pcic/index.html

  • Bürger G, Murdock TQ, Werner AT, Sobie SR, Cannon AJ (2012) Downscaling extremes—an intercomparison of multiple statistical methods for present climate. J Clim 25(12):4366–4388. doi:10.1175/jcli-d-11-00408.1

    Article  Google Scholar 

  • Busuioc A, Tomozeiu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. Int J Clim 28(4):449–464. doi:10.1002/joc.1547

    Article  Google Scholar 

  • Chen ST, Yu PS, Tang YH (2010) Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J Hydrol 385(1–4):13–22. doi:10.1016/J.Jhydrol.01.021

    Article  Google Scholar 

  • Crane R, Hewitson B (1998) Doubled CO2 precipitation changes for the Susquehanna Basin: down-scaling from the Genesis general circulation model. Int J Clim 18:65–76

    Article  Google Scholar 

  • DAI_Team (2009) Climatological maps from the Canadian regional climate model & the Canadian global climate model simulations over North America for the current (1961–1990) & future (2041–2070) periods. Environment Canada

  • Darlington RB (1990) Regression and linear models. Chapter 18. McGraw-Hill, New York

  • de Elia R, Cote H (2010) Climate and climate change sensitivity to model configuration in the Canadian RCM over North America. Meteorologische Zeitschrift 19(4):1–15

    Google Scholar 

  • de Elía R, Caya D, Côté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, Plummer D (2008) Evaluation of uncertainties in the CRCM-simulated North American climate. Clim Dyn 30(2–3):113–132. doi:10.1007/s00382-007-0288-z

    Article  Google Scholar 

  • Déqué et al. (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81(1):53–70. doi:10.1007/s10584-006-9228-x

  • Deser C, Phillips A, Bourdette V, Teng H (2010) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. doi:10.1007/s00382-010-0977-x

    Google Scholar 

  • Dibike YB, Coulibaly P (2006) Temporal neural networks for downscaling climate variability and extremes. Neural Netw 19(2):135–144. doi:10.1016/j.neunet.2006.01.003

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Clim 27(12):1547–1578. doi:10.1002/Joc.1556

    Article  Google Scholar 

  • Frías MD, Zorita E, Fernández J, Rodríguez-Puebla C (2006) Testing statistical downscaling methods in simulated climates. Geophys Res Lett 33(19). doi:10.1029/2006gl027453

  • Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19(1):14

    Google Scholar 

  • Furrer EM, Katz RW (2007) Generalized linear modeling approach to stochastic weather generators. Clim Res 34:129–144

    Article  Google Scholar 

  • Gangopadhyay S, Clark M, Rajagopalan B (2005) Statistical downscaling using K-nearest neighbors. Water Res Res 41:W02024. DOI:10.1029/2004wr003444

  • Harpham C, Wilby R (2005) Multi-site downscaling of heavy daily precipitation occurrence and amounts. J Hydrol 312(1–4):235–255. doi:10.1016/j.jhydrol.2005.02.020

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Asses 25(4):475–484. doi:10.1007/S00477-010-0416-X

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Clim 26(10):1397–1415. doi:10.1002/joc.1318

    Article  Google Scholar 

  • Hill T, Lewicki P (2006) Statistics: methods and applications: a comprehensive reference for science, industry and data mining. StatSoft, Tulsa

    Google Scholar 

  • Hsieh WW (2009) Machine learning methods in the environmental sciences: neural networks and kernels. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huth R (1999) Statistical downscaling in central Europe: evaluation of methods and potential predictors. Clim Res 13(2):91–101

    Article  Google Scholar 

  • Huth R (2003) Sensitivity of local daily temp change estimates to the selection of downscaling models and predictors. J Clim 17:640–652

    Article  Google Scholar 

  • Huth R, Kysely J, Dubrovsky M (2001) Time structure of observed, GCM-simulated, downscaled, and stochastically generated daily temperature series. J Clim 14(20):4047–4061

    Article  Google Scholar 

  • Huth R, Kysely J, Dubrovsky M (2003) Simulation of surface air temperature by GCMs, statistical downscaling and weather generator: higher-order statistical moments. Stud Geophys Geod 47:203–216

    Article  Google Scholar 

  • Iizumi T, Nishimori M, Dairaku K, Adachi SA, Yokozawa M (2011) Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. J Geophys Res Atmos 116. doi:10.1029/2010jd014513

  • IPCC (2000) Emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer Texts in Statistics. Springer, New York

    Book  Google Scholar 

  • Jekabsons G (2010) AresLab, version 1.5. Riga, Latvia. http://www.cs.rtu.lv/jekabsons/

  • Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012a) CGCM3 predictors used for daily temperature and precipitation downscaling in Southern Quebec, Canada. Theor Appl Climatol 107(3–4):389–406. doi:10.1007/S00704-011-0490-0

    Article  Google Scholar 

  • Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012b) Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stoch Environ Res Risk Assess 26(5):633–653. doi:10.1007/S00477-011-0523-3

    Article  Google Scholar 

  • Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012c) Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator. Clim Change 114(3–4):567–591. doi:10.1007/S10584-012-0451-3

    Article  Google Scholar 

  • Kallache M, Vrac M, Naveau P, Michelangeli PA (2011) Nonstationary probabilistic downscaling of extreme precipitation. J Geophys Res 116(D5). doi:10.1029/2010jd014892

  • Karl TR, Wang WC, Schlesinger ME, Knight RW, Portman D (1990) A method of relating general circulation model simulated climate to observed local climate. Part I: seasonal. J Clim 3(10):1053–1079

    Article  Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes—workshop summary. Clim Change 42(1):3–7

    Article  Google Scholar 

  • Khan M, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods. J Hydrol 319(1–4):357–382. doi:10.1016/j.jhydrol.2005.06.035

    Article  Google Scholar 

  • Laprise R (2008) Regional climate modelling. J Comput Phys 227(7):3641–3666. doi:10.1016/j.jcp.2006.10.024

    Article  Google Scholar 

  • Lucas-Picher P, Caya D, de Elía R, Laprise R (2008) Investigation of regional climate models’ internal variability with a ten-member ensemble of 10-year simulations over a large domain. Clim Dyn 31(7–8):927–940. doi:10.1007/s00382-008-0384-8

    Article  Google Scholar 

  • MacKay DJC (1992) Bayesian interpolation. Neural Comput 4(3):415–447

    Article  Google Scholar 

  • Maraun D (2012) Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys Res Lett 39(6). doi:10.1029/2012gl051210

  • Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M (2003) Guidelines for use of climate scenarios developed from regional climate model experiments (trans: IPCC DDCot). IPCC Technical Report. IPCC

  • Mearns LO, Gutowski WJ, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2007) The North American regional climate change assessment program dataset. Boulder, CO. doi:10.5065/D6RN35ST

  • Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284. doi:10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2

    Google Scholar 

  • Murphy KP (2012) Machine Learning: a probabilistic perspective. Adaptive computation and machine learning series. MIT Press, Cambridge

    Google Scholar 

  • Music B, Caya D (2007) Evaluation of the hydrological cycle over the Mississippi river basin as simulated by the Canadian regional climate model (CRCM). J Hydrometeorol 8(5):969–988. doi:10.1175/jhm627.1

    Article  Google Scholar 

  • Music B, Sykes C (2011) CRCM diagnostics for future water resources in OPG priority watersheds. In: Consortium on Regional Climatology and Adaptation to Climate Change. Ontario, Canada. http://www.ouranos.ca/media/publication/175_MusicSykes2011.pdf

  • Peterson TC (2005) Report on the activities of the working group on climate change detection and related rapporteurs 1998–2001. WMO, Geneve

    Google Scholar 

  • Rowell, DP (2006) A demonstration of the uncertainty in projections of UK climate change resulting from regional model formulation. Clim Change 79(3–4):243–257

    Google Scholar 

  • Schmidli J, Goodess CM, Frei C, Haylock MR, Hundecha Y, Ribalaygua J, Schmith T (2007) Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J Geophys Res 112(D4). doi:10.1029/2005jd007026

  • Schoof JT, Pryor SC (2001) Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int J Clim 21(7):773–790. doi:10.1002/joc.655

    Article  Google Scholar 

  • Semenov MA, Donatelli M, Stratonovitch P, Chatzidaki E, Baruth B (2010) ELPIS: a dataset of local-scale daily climate scenarios for Europe. Clim Res 44(1):3–15. doi:10.3354/cr00865

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans A Math Phys Eng Sci 365(1857):2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geogr Compass 4(7):834–860

    Google Scholar 

  • Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17(12):5061–5077. doi:10.5194/hess-17-5061-2013

    Article  Google Scholar 

  • Tomassetti B, Verdecchia M, Giorgi F (2009) NN5: a neural network based approach for the downscaling of precipitation fields—model description and preliminary results. J Hydrol 367(1–2):14–26. doi:10.1016/j.jhydrol.2008.12.017

    Article  Google Scholar 

  • Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 14(23):4422–4446. doi:10.1175/1520- 0442(2001)014<4422:Psoiac>2.0.Co;2

    Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6:1161–1171. doi:10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2

    Google Scholar 

  • Vrac M, Stein ML, Hayhoe K, Liang XZ (2007) A general method for validating statistical downscaling methods under future climate change. Geophys Res Lett 34(18). doi:10.1029/2007gl030295

  • Wigley TML, Jones PD, Briffa KR, Smith G (1990) Obtaining subgrid scale information from coarse resolution general circulation model output. J Geophys Res 95(D2):1943–1953

    Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21(4):530–548. doi:10.1177/030913339702100403

    Article  Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34(11):2995–3008

    Article  Google Scholar 

  • Wilby RL, Conway D, Jones PD (2002) Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrol Process 16(6):1215–1234. doi:10.1002/Hyp.1058

    Article  Google Scholar 

  • Wilby et al. (2004) Guidelines for the use of climate scenarios developed from statistical downscaling models. IPCC task group on data and scenario support for impact and climate analysis (TGICA). http://ipcc-ddc.cru.uea.ac.uk/guidelines/StatDown_Guide.pdf

  • Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Clim 45:1181–1189

    Article  Google Scholar 

  • Wilks DS (2010) Use of stochastic weather generators for precipitation downscaling. Wires Clim Change 1(6):898–907. doi:10.1002/Wcc.85

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences. International geophysics series, vol 100, 3rd edn. Academic Press, London

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Clim 32(13):2088–2094. doi:10.1002/joc.2419

    Article  Google Scholar 

  • Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim Change 2(6):851–870. doi:10.1002/Wcc.147

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the data access integration (DAI) Team for providing the data (CGCM3 and CRCM 4.2) and technical support. The DAI Portal (http://loki.qc.ec.gc.ca/DAI/) is made possible through collaboration among the Global Environmental and Climate Change Centre (GEC3), the Adaptation and Impacts Research Division (AIRD) of Environment Canada, and the drought research initiative (DRI). The Ouranos Consortium (in Quebec) provides access of the CRCM. We are grateful for the support from a Special Research Opportunity grant awarded by the Canadian Natural Sciences and Engineering Research Council, and to Prof. Van Nguyen for leading the multi-university project. This work is part of the “Probabilistic assessment of regional changes in climate variability and extremes” project funded by the Natural Sciences and Engineering Research Council of Canada through a Special Research Opportunity (NSERC-SRO) grant. The project aims to develop high-resolution climate change information with the Canadian GCMs and different downscaling methodologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Gaitan.

Appendix

Appendix

See Table 3.

Table 3 Software packages and functions used in the project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaitan, C.F., Hsieh, W.W. & Cannon, A.J. Comparison of statistically downscaled precipitation in terms of future climate indices and daily variability for southern Ontario and Quebec, Canada. Clim Dyn 43, 3201–3217 (2014). https://doi.org/10.1007/s00382-014-2098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2098-4

Keywords

Navigation