Skip to main content

Advertisement

Log in

An assessment of the ENSO forecast skill of GEOS-5 system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The seasonal forecast skill of the NASA Global Modeling and Assimilation Office atmosphere–ocean coupled global climate model (AOGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the AOGCM consisting of the GEOS-5 AGCM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase transition of the equatorial zonal current from westerly to easterly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The US National Multi-Model Ensemble (NMME) is an experimental multi-model seasonal forecasting system consisting of coupled models from NOAA/NCEP, NOAA/GFDL, IRI, NCAR, NASA, and Canada's CMC.

References

  • Adler RF et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • McPhaden M et al (2010) The global tropical moored buoy array. In Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society (Vol. 2), Venice, Italy, 21–25 September 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.61

  • Bacmeister J, Pegion PJ, Schubert SD, Suarez MJ (2000) Atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA Tech. Memo. 2000–104606, Vol. 17, 194 pp

  • Balmaseda MA, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. doi:10.1029/2008GL035561

    Google Scholar 

  • Barnston AG (1992) Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Wea Forecast 7:699–709

    Article  Google Scholar 

  • Barthelet P, Terray L, Valcke S (1998) Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys Res Lett 25:2277–2280

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Preprints, eighth symposium on integrated observing and assimilation systems for atmosphere, ocean and land surface, Seattle, WA, Amer Meteor Soc, pp 11–15. [Available online at http://ams.confex.com/ams/84Annual/webprogram/Paper70720.html.]

  • Behringer DW, Ming J, Ants L (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: the ocean data assimilation system. Mon Wea Rev 126:1013–1021

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Nino over the past 148 years. Nature 428:733–736

    Article  Google Scholar 

  • Danabasoglu G et al (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19(11):2347–2365

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustment. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  • Ham Y-G, Kug J-S (2012) How well do current climate models simulate two-types of El Nino? Clim Dyn 39:383–398. doi:10.1007/s00382-011-1157-3

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Kang I-S, Jin F-F, Timmermann A (2010) Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Clim Dyn 34(6):905–917

    Article  Google Scholar 

  • Ham Y-G, Kang I-S, Kim D, Kug J-S (2012a) El-Nino southern oscillation simulated and predicted in SNU coupled GCMs. Clim Dyn 38:2227–2242. doi:10.1007/s00382-011-1171-5

    Article  Google Scholar 

  • Ham Y-G, Kang I-S, Kug J-S (2012b) Coupled bred vectors in the tropical pacific and their application to ENSO prediction. Prog Oceanogr 105:90–101. doi:10.1016/j.pocean.2012.04.005

    Article  Google Scholar 

  • Ham Y-G, Schubert S, Chang Y (2012c) Optimal initial perturbations for ensemble prediction of the madden-julian oscillation during boreal winter. J Clim 25:4932–4945. doi:10.1175/JCLI-D-11-00344.1

    Article  Google Scholar 

  • Ham Y-G, Rienecker MM, Schubert S, Marshak J, Yeh S-W, Yang S-C (2012d) The decadal modulation of coupled bred vectors. Geophy Res Lett 37:L20712. doi:10.1029/2012GL053719

    Google Scholar 

  • Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26(11):1593–1596

    Article  Google Scholar 

  • Jin F-F (1997) An equatorial recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708. doi:10.1029/2006GL027221

    Article  Google Scholar 

  • Kang I-S, An S-I, Jin F-F (2001) A systematic approximation of the SST anomaly equation for ENSO. J Meteor Soc Jpn 79:1–10

    Article  Google Scholar 

  • Keppenne CL, Rienecker MM, Jacob JP, Kovach R (2008) Error covariance modeling in the GMAO ocean ensemble Kalman filter. Mon Weather Rev 136:2964–2982

    Article  Google Scholar 

  • Kim S, Jin FF (2011) An enso stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36:1609–1627

    Article  Google Scholar 

  • Kim D, Jang Y-S, Kim D-H, Kim Y-H, Watanabe M, Jin F-F, Kug J-S (2011) El Niño-Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J Geophys Res 116:D22112. doi:10.1029/2011JD016526

    Google Scholar 

  • Koster R, Suarez M (1992) Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res 97:2697–2715

    Article  Google Scholar 

  • Kug J-S, Kang I-S, An S-I (2003) Symmetric and anti-symmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J Geophy Res Oceans 108(C8):3284

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403. doi:10.1029/94RG01872

    Article  Google Scholar 

  • Lin S-J (2004) A vertically Lagrangian finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2307

    Article  Google Scholar 

  • Luo J-J, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Molod A, Takacs L, Suarez M, Bacmeister J, Song I-S, Eichmann A (2012) The GEOS-5 atmospheric general circulation model: mean climate and development from MERRA to fortuna. Technical report series on global modeling and data assimilation, 28

  • Molteni F, et al. (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Technical Memorandum 656

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa–Schubert: a parameterization of moist convection for general circulation models. Mon Wea Rev 120:978–1002

    Article  Google Scholar 

  • Murphy JM (1988) The impact of ensemble forecasts on predictability. Q J R Meteorol Soc 114:463–493

    Article  Google Scholar 

  • Palmer TN et al (2004) Development of a European multimodal ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85:853–872

    Article  Google Scholar 

  • Rienecker MM, et al. (2007) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2007-104606, Vol. 27

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Roberts MJ et al (2004) Impact of an eddy permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17:3–20

    Article  Google Scholar 

  • Rogel P, Weaver AT, Daget N, Ricci S, Machu E (2005) Ensembles of global ocean analyses for seasonal climate prediction: impact of temperature assimilation. Tellus A 57:375–386

    Article  Google Scholar 

  • Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Wea Rev 125:754–772

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Schopf P, Loughe A (1995) A reduced-gravity isopycnal ocean model: hindcasts of El Nino. Mon Wea Rev 123:2839–2863

    Article  Google Scholar 

  • Tang Y, Kleeman R (2002) A new strategy for assimilating SST data for ENSO predictions. Geophys Res Lett 29: 1841. doi:10.1029/2002GL014860

  • Vernieres G, et al (2013) The GEOS-ODAS, description and evaluation. NASA Technical Memorandum (in preparation)

  • Wang B, et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33, doi:10.1007/s00382-008-0460-0

  • Wang G, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Wea Rev 130:975–991

    Article  Google Scholar 

  • Washington WM et al (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Article  Google Scholar 

  • Watanabe M, Chikira M, Imada Y, Kimoto M (2011) Convective control of ENSO simulated in MIROC. J Clim 24:543–562

    Article  Google Scholar 

  • Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Wea Rev 139:786–808

    Article  Google Scholar 

  • Yoo J-H, Kang I-S (2005) Theoretical examination of a multi-model composite for seasonal prediction. Geophys Res Lett 32:L15711. doi:10.1029/2005GL023513

    Article  Google Scholar 

  • Yuan X, Wood EF, Luo LF, Pan M (2011) A first look at climate forecast system version 2 (CFSv2) for hydrological seasonal prediction. Geophys Res Lett 38:L13402. doi:10.1029/2011GL047792

    Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Wea Rev 135:3541–3564

    Article  Google Scholar 

Download references

Acknowledgments

YGH was funded by the Korea Meteorological Administration Research and Development Program under grant CATER 2012-3041. And, we are grateful for the comments from Christian L. Keppenne to provide a detail information about the initialization systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo-Geun Ham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, YG., Schubert, S., Vikhliaev, Y. et al. An assessment of the ENSO forecast skill of GEOS-5 system. Clim Dyn 43, 2415–2430 (2014). https://doi.org/10.1007/s00382-014-2063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2063-2

Keywords

Navigation