Skip to main content

Advertisement

Log in

Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere–ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961–1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region’s weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021–2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10–20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alcamo J et al (2007) Europe. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden and C. E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 541–580

  • Alpert P et al (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 149–177

    Google Scholar 

  • Beaulant AL, Joly B, Nuissier O, Somot S, Ducrocq V, Joly A, Sevault F, Deque M, Ricard D (2011) Statistico-dynamical downscaling for Mediterranean heavy precipitation. Q J R Meteorol Soc 137:736–748

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY

  • Coppola E, Giorgi F, Rauscher SA, Piani C (2010) Model weighting based on mesoscale structures in precipitation and temperature in an ensemble of regional climate models. Clim Res 44:121–134. doi:10.3354/cr0094

    Article  Google Scholar 

  • Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    Article  Google Scholar 

  • Déqué M, Somot S, Sanchez-Gomez E, Goodess C, Jacob D, Lenderink D, Christensen OB (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi:10.1007/s00382-011-1053-x

    Article  Google Scholar 

  • Driouech F, Déqué M, Sánchez-Gómez E (2010) Weather regimes—Moroccan precipitation link in a regional climate change simulation. Global Planet Change 72(2010):1–10. doi:10.1016/j.gloplacha.2010.03.004

    Article  Google Scholar 

  • Fontaine B, Gaetani M, Ullmann A, Roucou P (2011) Time evolution of observed July-September sea surface temperature-Sahel climate teleconnection with removed quasi-global effect (1900–2008). J Geophys Res 116:D04105. doi:10.1029/2010JD014843

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104

    Article  Google Scholar 

  • Hatzianastassiou N, Gkikas A, Mihalopoulos N, Torres O, Katsoulis BD (2009) Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data. J Geophys Res 114:D24202. doi:10.1029/2009JD011982

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JD, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix J, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Hurrell J (1996) Influence of variations in extratropical wintertime teleconnections on Norhtern Hemisphere temperature. Geo Res Lett 23(6):665–668

    Article  Google Scholar 

  • Jones PD, Lister DH (2009) The influence of the circulation on surface temperature and precipitation patterns over Europe. Clim Past 5:259–267

    Article  Google Scholar 

  • L’Hévéder B, Li L, Sevault F, Somot S (2012) Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Clim Dyn. doi:10.1007/s00382-012-1527-5

  • Li Z (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001

    Article  Google Scholar 

  • Lionello P et al (2006a) The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Lionello P et al (2006b) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 325–372

    Google Scholar 

  • Luterbacher J et al (2006) Mediterranean climate variability over the last centuries. A review. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 27–148

    Google Scholar 

  • MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. in: Proceedings of 5th Berkeley symposium on mathematical statistics and probability. University of California Press. pp. 281–297. MR0214227. Zbl 0214.46201. http://projecteuclid.org/euclid.bsmsp/1200512992

  • Mariotti A, Zeng N, Yoon JH, Artale V, Navarra A, Alpert P, Li L (2008) Mediterranean water cycle changes: transition to drier twenty-first century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 3 044001. doi:10.1088/1748-9326/3/4/044001

  • Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26. doi:10.1007/s00382-009-0640-6

    Article  Google Scholar 

  • MEDATLAS (1997) Mediterranean hydrological Atlas on CD- ROM. IFREMER (Ed.), published by IFREMER/DITI/IDT on behalf of the MEDATLAS consortium under contract MAS2-CT93-0074

  • Michelangeli P, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi-stationarity. J Atmos Sci 52:1237–1256

    Article  Google Scholar 

  • Moron V, Plaut G (2003) The impact of El Niño southern oscillation upon weather regimes over Europe and the North Atlantic boreal winter. Int J Climatol 23:363–379

    Article  Google Scholar 

  • Nuissier O, Joly B, Joly A, Ducrocq V, Arbogast P (2011) A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France. Q J R Meteorol Soc 137:1812–1827

    Article  Google Scholar 

  • Plaut G, Simmonnet E (2001) Large-scale circulation classification, weather regimes, and local climate over France, the Alps and Western Europe. Clim Res 17:303–324

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2002). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

  • Rojas M (2006) Multiple nested regional climate simulations for Southern South America: sensitivity to model resolution. Mon Weather Rev 134:2208–2223

    Article  Google Scholar 

  • Rossow WB, Garder LC (1993) Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J Clim 6:2341–2369

    Article  Google Scholar 

  • Rossow WB, Golea V (2013) Factors that might affect ISCCP determinations of long-term cloud cover changes. J Climate (submitted)

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2288

    Article  Google Scholar 

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP) Documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological Organization

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput Appl Math 20:53–65. doi:10.1016/0377-0427(87)90125-7

  • Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50

    Article  Google Scholar 

  • Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea : NEMOMED8 user’s guide, Note 107. Groupe de Météorol. de Grande Echelle et Climat, CNRM, Toulouse

    Google Scholar 

  • Solman SA, Menéndez CG (2003) Weather regimes in the South American sector and neighbouring oceans during winter. Clim Dyn 21(1):91–104

    Google Scholar 

  • Straus DM, Molteni F (2004) Circulation regimes and SST forcing: results from large GCM ensembles. J Climate 17:1641–1656

    Article  Google Scholar 

  • Stubenrauch CJ, Rossow WB, Kinne S, Ackerman S, Cesana G, Chepfer H, Getzewich B, Di Girolamo L, Guignard A, Heidinger A, Maddux B, Menzel P, Minnis P, Pearl C, Platnick S, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S, Zhao G (2012) Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bulletin of the American Meteorological Society. doi:10.1175/BAMS-D-12-00117

  • Trigo R et al (2006) Relations between variability in the Mediterranean region and mid-latitude variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 179–226

    Google Scholar 

  • Ulbrich U et al (2006) The Mediterranean climate change under global warming. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 398–415

    Google Scholar 

  • Ullmann A, Moron V (2008) Weather regimes and sea surge variations over the Gulf of Lions (French Mediterranean coast) during the 20th century. Int J Climatol 28:159–171. doi:10.1002/joc.1527

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (oasis3_prism_2-5). PRISM support initiative report no 3. CERFACS, Toulouse, France 64 pp

  • Vautard R (1990) Multiple weather regimes over the North-Atlantic—analysis of precursors and successors. Mon Wea Rev 118:2056–2081. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Vrac M, Yiou P (2010) Weather regimes designed for local precipitation modeling: application to the Mediterranean basin. J Geophys Res 115:D12103. doi:10.1029/2009JD012871

    Article  Google Scholar 

  • Xoplaki E, González-Rouco FJ, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability. Influence of large-scale dynamics. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Yiou P, Ribereau P, Naveau P, Nogaj M, Brázdil R (2006) Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrol Sci J 51(5):930–945. doi:10.1623/hysj.51.5.930

    Article  Google Scholar 

Download references

Acknowledgments

Support by the European Union Integrated Project -036961, Climate Change and Impact Research: the Mediterranean Environment (CIRCE) is acknowledged. This work was partly supported by the French ANR project REMEMBER (ANR-12-SENV-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rojas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, M., Li, L.Z., Kanakidou, M. et al. Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn 41, 551–571 (2013). https://doi.org/10.1007/s00382-013-1823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1823-8

Keywords

Navigation