Skip to main content
Log in

Dynamic and thermodynamic features of low and middle clouds derived from atmospheric radiation measurement program mobile facility radiosonde data at Shouxian, China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

By using the radiosonde measurements collected at Shouxian, China, we examined the dynamics and thermodynamics of single- and two-layer clouds formed at low and middle levels. The analyses indicated that the horizontal wind speed above the cloud layers was higher than those within and below cloud layers. The maximum balloon ascent speed (5.3 m s−1) was located in the vicinity of the layer with the maximum cloud occurrence frequency (24.4%), indicating an upward motion (0.1–0.16 m s−1). The average thickness, magnitude and gradient of the temperature inversion layer above single-layer clouds were 117±94 m, 1.3±1.3°C and 1.4±1.5°C (100 m)−1, respectively. The average temperature inversion magnitude was the same (1.3°C) for single-low and single-middle clouds; however, a larger gradient [1.7±1.8°C (100 m)−1] and smaller thickness (94±67 m) were detected above single-low clouds relative to those above single-middle clouds [0.9±0.7°C (100 m)−1 and 157±120 m]. For the two-layer cloud, the temperature inversion parameters were 106±59 m, 1.0±0.9°C and 1.0±1.0°C (100 m)−1 above the upper-layer cloud and 82±60 m, 0.6±0.9°C and 0.7±0.6°C (100 m)−1 above the low-layer cloud. Absolute differences between the cloud-base height (cloud-top height) and the lifting condensation level (equilibrium level) were less than 0.5 km for 66.4% (36.8%) of the cases analyzed in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouniol, D., F. Couvreux, P. H. Kamsu-Tamo, M. Leplay, F. Guichard, F. Favot, and E. J. O’Connor, 2012: Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa. J. Appl. Meteor. Climatol., 51, 534–553, doi: 10.1175/JAMC-D-11-051.1.

    Article  Google Scholar 

  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci., 44, 2951–2977.

    Article  Google Scholar 

  • Chernykh, I. V., and R. E. Eskridge, 1996: Determination of cloud amount and level from radiosonde soundings. J. Appl. Meteor., 35, 1362–1369.

    Article  Google Scholar 

  • Chernykh, I. V., O. A. Alduchov, and R. E. Eskridge, 2000: Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Amer. Meteor. Soc., 82, 1941–1947.

    Article  Google Scholar 

  • Clothiaux, E. E., T. P. Ackerman, G. C. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645–665.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Pres., San Diego, USA, 883 pp.

    Google Scholar 

  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecastin., 17, 885–890.

    Article  Google Scholar 

  • Del Genio, A. D., A. B. Wolf, and M. S. Yao, 2005: Evaluation of regional cloud feedbacks using single-column models. J. Geophys. Res., 110, D15S13, doi: 10.1029/2004JD005011.

    Google Scholar 

  • Doswell III, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecastin., 9, 625–629.

    Article  Google Scholar 

  • Espy, J. P., 1841: The Philosophy of Storms. C. C. Little and J. Brow., Boston, USA, 552 pp.

    Google Scholar 

  • Fan, X. H., H. B. Chen, X. G. Xia, Z. Q. Li, and M. Cribb, 2010: Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China. J. Geophys. Res., 115, D00K33, doi: 10.1029/2010JD014650.

    Google Scholar 

  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23, 253–275.

    Article  Google Scholar 

  • Illingworth, A. J., and Coauthors, 2007: Cloudnet–continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883–898, doi: 10.1175/BAMS-88-6-883.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007: The Physical Science Basis. S. Solomon et al., Eds. Cambridge Univ. Press, Cambridge, U. K., 996 pp.

  • Intergovernmental Panel on Climate Change (IPCC), 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang., Summary for Policymakers. Stocker et al., Eds., 33 pp. [Available online at http://www.climatechange2013.org/.]

  • Kalesse, H., and P. Kollias, 2013: Climatology of high cloud dynamics using profiling ARM Doppler radar observations. J. Climat., 26, 6340–6359.

    Article  Google Scholar 

  • Kollias, P., M. A. Miller, K. L. Johnson, M. P. Jensen, and D. T. Troyan, 2009: Cloud, thermodynamic, and precipitation in West Africa during 2006. J. Geophys. Res., 114, D00E08, doi: 10.1029/2008JD010641.

    Google Scholar 

  • Kunnen, R. P. J., C. Siewert, M. Meinke, W. Schröder, and K. D. Beheng, 2013: Numerically determined geometric collision kernels in spatially evolving isotropic turbulence relevant for droplets in clouds. Atmospheric Researc., 127, 8–21.

    Article  Google Scholar 

  • Li, Z. Q., M. Cribb, F. L. Chang, A. Trishchenko, and Y. Luo, 2005: Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region. J. Geophys. Res., 110, D15S19, doi: 10.1029/2004JD005028.

    Google Scholar 

  • Li, Z. Q., and Coauthors, 2011: East Asian studies of tropospheric aerosols and their impact on regional climate (EASTAIRC): An overview. J. Geophys. Res., 116, D00K34, doi: 10.1029/2010JD015257.

    Google Scholar 

  • Mace, G. G., and S. Benson, 2008: The vertical structure of cloud occurrence and radiative forcing at the SGP ARM site as revealed by 8 years of continuous data. J. Climat., 21, 2591–2610, doi: 10.1175/2007JCLI1987.1.

    Article  Google Scholar 

  • Manzato, A., 2007. Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmospheric Research, 83, 349–365.

    Article  Google Scholar 

  • Minnis, P., Y. H. Yi, J. P. Huang, and J. K. Ayers, 2005: Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res., 110, D23, doi: 10.1029/2005JD006005.

    Google Scholar 

  • Naud, C., J. P. Muller, and E. E. Clothiaux, 2003: Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108, D44140, doi: 10.1029/2002JD002887.

    Google Scholar 

  • Poore, K. D., J. H. Wang, and W. B. Rossow, 1995: Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climat., 8, 550–568.

    Article  Google Scholar 

  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456–478, doi: 10.1175/JAMC-D-13-072.1.

    Article  Google Scholar 

  • Rickenbach, T., R. Nieto Ferreira, N. Guy, and E. Williams, 2009: Radar-observed squall line propagation and the diurnal cycle of convection in Niamey, Niger, during the 2006 African Monsoon and Multidisciplinary Analysis Intensive Observing Period. J. Geophys. Res., 114, D03107, doi: 10.1029/2008JD010871.

    Google Scholar 

  • Riihimaki, L. D., S. A. McFarlane, and J. M. Comstock, 2012: Climatology and formation of tropical midlevel clouds at the Darwin ARM Site. J. Climat., 25, 6835–6850, doi: 10.1175/JCLI-D-11-00599.1.

    Article  Google Scholar 

  • Sassen, K., and Z. E. Wang, 2012: The clouds of the middle troposphere: composition, radiative impact, and global distribution. Surveys in Geophysic., 33, 677–691, doi: 10.1007/s10712-011-9163-x.

    Article  Google Scholar 

  • Sherwood, S. C., S. Bony, and J. L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Natur., 505, 37–42, doi: 10.1038/nature12829.

    Article  Google Scholar 

  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422–444.

    Article  Google Scholar 

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climat., 18, 237–273.

    Article  Google Scholar 

  • Tao, W. K., J. P. Chen, Z. Q. Li, C. Wang, and C. D. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi: 10.1029/2011RG000369.

    Article  Google Scholar 

  • Trenberth, K., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324, doi: 10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Wang, J. H., and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 2243–2258.

    Article  Google Scholar 

  • Wang, J. H., W. B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127, 2482–2502.

    Article  Google Scholar 

  • Wang, J. H., W. B. Rossow, and Y. C. Zhang, 2000: Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J. Climat., 13, 3041–3056.

    Article  Google Scholar 

  • Xi, B. K., X. Q. Dong, P. Minnis, and M. M. Khaiyer, 2010: A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SGP Site. J. Geophys. Res., 115, D12, doi: 10.1029/2009JD012800.

    Google Scholar 

  • Zhang, J. Q., H. B. Chen, Z. Q. Li, X. H. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D7, doi: 10.1029/2010JD014030.

    Google Scholar 

  • Zhang, J. Q., Z. Q. Li, H. B. Chen, and M. Cribb, 2013: Validation of a radiosonde-based cloud layer detection method against a ground-based remote sensing method at multiple ARM sites. J. Geophys. Res., 118, 846–858, doi: 10.1029/2012JD018515.

    Google Scholar 

  • Zhang, J. Q., Z. Q. Li, H. B. Chen, H. Yoo, and M. Cribb, 2014: Cloud vertical distribution from radiosonde, remote sensing, and model simulations. Climate Dyn., 43, 1129–1140, doi: 10.1007/s00382–014-2142-4.

    Article  Google Scholar 

  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15, doi: 10.1029/2004JD005021.

    Google Scholar 

  • Zhang, Y. Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 2943–2959.

    Article  Google Scholar 

  • Zhao, C., and Coauthors, 2011: ARM Cloud Retrieval Ensemble Data Set (ACRED). DOE ARM technical repor., DOE/SCARM- TR-099, Dep. of Energy, Washington, D. C., 28 pp. [Available online at http://www.arm.gov/publications/techreports/doe-sc-arm-tr-099.pdf.]

  • Zhao, C. F., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi: 10.1029/2011JD016792.

    Article  Google Scholar 

  • Zhao, C. F., Y. Z. Wang, Q. Q. Wang, Z. Q. Li, Z. E. Wang, and D. Liu, 2014: A new cloud and aerosol layer detection method based on micropulse lidar measurements. J. Geophy. Res., 119, 6788–6802, doi: 10.1002/2014JD021760.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, H., Xia, X. et al. Dynamic and thermodynamic features of low and middle clouds derived from atmospheric radiation measurement program mobile facility radiosonde data at Shouxian, China. Adv. Atmos. Sci. 33, 21–33 (2016). https://doi.org/10.1007/s00376-015-5032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5032-8

Key words

Navigation