Skip to main content
Log in

Evaluation of CMIP5 climate models in simulating 1979–2005 oceanic latent heat flux over the Pacific

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The climatological mean state, seasonal variation and long-term upward trend of 1979–2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux (Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well, but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region, and the meridional variability of LHF, are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity. Comparing the observed long-term upward trend, the trends of LHF and wind speed are largely underestimated, while trends of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the trend of LHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 2963–2978.

    Article  Google Scholar 

  • Berry, D. I., and E. C. Kent, 2009: A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645–656.

    Article  Google Scholar 

  • Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Inter. J Climatol., 31, 987–1001.

    Article  Google Scholar 

  • Bigg, G. R., T. D. Jickells, P. S. Liss, and T. J. Osborn, 2003: The role of the oceans in climate. Int. J. Climatol., 23, 1127–1159, doi: 10.1002/joc.926.

    Article  Google Scholar 

  • Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35(1), L01704, doi: 10.1029/2007GL031830.

    Google Scholar 

  • Cayan, D. R., 1992a: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.-Ocean, 30, 1–42.

    Article  Google Scholar 

  • Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354–369.

    Article  Google Scholar 

  • Cayan, D. R., 1992c: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    Article  Google Scholar 

  • Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838–841.

    Article  Google Scholar 

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Climate, 16, 571–591.

    Article  Google Scholar 

  • Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 4539–4556.

    Article  Google Scholar 

  • Gulev, S. K., 1995: Long-term variability of sea-air heat transfer in the North Atlantic Ocean. Inter. J. Climatol., 15, 825–852, doi: 10.1002/joc.3370150802.

    Article  Google Scholar 

  • Hayashi, Y., 1982: Confidence intervals of a climatic signal. J. Atmos. Sci., 39, 1895–1905.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19(21), 5686–5699.

    Article  Google Scholar 

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208.

    Article  Google Scholar 

  • Li, G., B. H. Ren, C. Y. Yang, and J. Q. Zheng, 2011a: Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006. J. Geophys. Res., 116, D10115, doi: 10.1029/2010JD015444.

    Article  Google Scholar 

  • Li, G., B. H. Ren, J. Q. Zheng, and C. Y. Yang, 2011b: Net air-sea surface heat flux during 1984–2004 over the North Pacific and North Atlantic oceans (10°N–50°N): Annual mean climatology and trend. Theor. Appl. Climatol., 104, 387–401.

    Article  Google Scholar 

  • Li, G., and S. P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39(22), L22703, doi: 10.1029/2012GL053777.

    Google Scholar 

  • Liu, J. P., and J. A. Curry, 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophys. Res. Lett., 33, L05706, doi: 10.1029/2005GL024809.

    Google Scholar 

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterizations of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722–1735.

    Article  Google Scholar 

  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrology and Earth System Sciences, 12, 551–563.

    Google Scholar 

  • Maurer, E. P., L. D. Brekke, and T. Pruitt, 2010: Contrasting lumped and distributed hydrology models for estimating climate change impacts on California watersheds. Journal of the American Water Resources Association, 46(5), 1024–1035.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 1997: Intercomparison makes for a better climate model. Eos, Trans. Amer. Geophys. Union, 78(41), 445–451.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81(2), 313–318.

    Article  Google Scholar 

  • Mitas, C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett., 33(1), L01810, doi: 10.1029/2005GL024406.

    Google Scholar 

  • O’Brien, E. W., and F. Horsfall, 1995: Sensitivity of the heat budget in a midlatitude ocean model to variations in atmospheric forcing. J. Geophys. Res., 100, 24761–24772.

    Article  Google Scholar 

  • Papadopoulos, V. P., Y. Abualnaja, S. A. Josey, A. Bower, D. E. Raitsos, H. Kontoyiannis, and I. Hoteit, 2013: Atmospheric forcing of the winter air-sea heat fluxes over the Northern Red Sea. J. Climate, 26, 1685–1701.

    Article  Google Scholar 

  • Quan, X. W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Present, Past, and Future, Diaz and Bradley, Eds., Springer Netherlands, 85–120.

    Chapter  Google Scholar 

  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate. Bull. Amer. Meteor. Soc., 89(3), 303–311.

    Article  Google Scholar 

  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layeraverage atmospheric temperature time series. J. Geophys. Res., 105(D6), 7337–7356.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192.

    Article  Google Scholar 

  • Trenberth, K. E., 1995: Atmospheric circulation climate changes. Climatic Change, 31, 427–453.

    Article  Google Scholar 

  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107–134.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20(17), 4316–4340.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441(7089), 73–76.

    Article  Google Scholar 

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317(5835), 233–235.

    Article  Google Scholar 

  • Yu, L. S., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20(21), 5376–5390.

    Article  Google Scholar 

  • Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527–539.

    Article  Google Scholar 

  • Yu, L. S., R. A.Weller, and B. M. Sun, 2004: Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J. Climate, 17, 2096–2118.

    Article  Google Scholar 

  • Yu, L. S., X. Z. Jin, and R. A. Weller, 2007: Annual, seasonal, and interannual variability of air-sea heat fluxes in the Indian Ocean. J. Climate, 20, 3190–3209.

    Article  Google Scholar 

  • Yu, L. S., X. Z. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report OA-2008-01, 64 pp.

    Google Scholar 

  • Yulaeva, E., N. Schneider, D. W. Pierce, and T. P. Barnett, 2010: Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Climate, 14, 4027–4046.

    Article  Google Scholar 

  • Zhou, L. T., 2013: Influence of thermal state of warm pool in western Pacific on sensible heat flux. Atmospheric Science Letters, 14, 91–96. doi: 10.1002/asl2.422

    Article  Google Scholar 

  • Zhou, L. T., G. S. Chen, and R. G. Wu, 2015: Change in surface latent heat flux and its association with tropical cyclone genesis in the western North Pacific. Theor. Appl. Climatol., 119, 221–227.

    Article  Google Scholar 

  • Zhou, Y. P., K. M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116(D9), D09101, doi: 10.1029/2010JD015197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, N., Ren, B. & Zheng, J. Evaluation of CMIP5 climate models in simulating 1979–2005 oceanic latent heat flux over the Pacific. Adv. Atmos. Sci. 32, 1603–1616 (2015). https://doi.org/10.1007/s00376-015-5016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5016-8

Keywords

Navigation