Skip to main content
Log in

Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric “heat engine” more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Niño-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with other external radiative forcings that do not influence the climate in the same way as the sun does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, L., G. C. Craig, and J. Thuburn, 2002: Poleward heat transport by the atmospheric heat engine. Nature, 415, 774–777.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.

    Article  Google Scholar 

  • Camp, C. D., and K.-K. Tung, 2007: Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 34, L14703, doi: 10.1029/2007GL030207.

    Article  Google Scholar 

  • Ding, Y., and T. Krishnamurti, 1987: Heat budget of the Siberian High and the winter monsoon. Mon. Wea. Rev., 115, 2428–2449.

    Article  Google Scholar 

  • Gleissberg, W., 1965: The eighty-year solar cycle in auroral frequency numbers. Journal of the British Astronomical Association, 75, 227.

    Google Scholar 

  • Gong, D.-Y., and C.-H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 1–9.

    Article  Google Scholar 

  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001.

    Article  Google Scholar 

  • Haigh, J. D., 2007: The Sun and the Earth’s climate. Living Rev. Solar Phys., 4, lrsp-2007-2. [Available online from http://www.livingreviews.org/lrsp-2007-2]

  • Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L. J. Gray, and J. D. Haigh, 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geoscience, doi: 10.1038/NGEO1282.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge and New York, 996pp.

    Google Scholar 

  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physics D, 98, 442–465.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288(5473), 1984–1986.

    Article  Google Scholar 

  • Kodera, K., and Y. Kuroda, 2005: A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res., 110, D02111, doi: 10.1029/2004JD005258.

    Article  Google Scholar 

  • Labitzke, K., and H. van Loon, 1988: Association between the 11-year solar cycle, the QBO, and the atmosphere, I, The troposphere and stratosphere on the Northern Hemisphere winter. J. Atmos. Terr. Phys., 50, 197–206.

    Article  Google Scholar 

  • Lean, J., 1991: Variations in the sun’s radiative output. Rev Geophys, 29, 505–535.

    Article  Google Scholar 

  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, doi: 10.1029/2009GL038932.

    Article  Google Scholar 

  • Li, C., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 36–46.

    Article  Google Scholar 

  • Li, J., and J. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi: 10.1029/2003GL017441.

    Article  Google Scholar 

  • Lindzen, R. S., 1994: Climate dynamics and global change. Annual Review of Fluid Mechanics, 26, 353–378.

    Article  Google Scholar 

  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. WMO, Geneva, 161pp.

    Google Scholar 

  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479–1494.

    Article  Google Scholar 

  • Meehl, G. A., J. M. Arblaster, G. Branstator, and H. van Loon, 2008: A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897, doi: 10.1175/2007JCLI1776.1.

    Article  Google Scholar 

  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 1855–1874.

    Article  Google Scholar 

  • NRC, 1994: Solar Influences on Global Change. Natl. Acad., Washington, D.C., USA, 163pp.

    Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, doi: 10.1029/2002JD002670.

  • Reid, G. C., 1991: Solar total irradiance variations and the global sea surface temperature record. J. Geophys. Res., 96, 2835–2844.

    Article  Google Scholar 

  • Robock, A., 2002: The climatic aftermath. Science, 295, 1242–1244.

    Article  Google Scholar 

  • Roy, I., and J. D. Haigh, 2010: Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 100, 3147–3153.

    Article  Google Scholar 

  • Salby, M., and P. Callaghan, 2004: Evidence of the solar cycle in the general circulation of the stratosphere. J. Climate, 17, 34–46.

    Article  Google Scholar 

  • Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergran, 1999: Solar cycle variability, ozone, and climate. Science, 284, 305–308.

    Article  Google Scholar 

  • Semenov, V. A., M. Latif, D. Dommenget, N. S. Keenlyside, A. Strehz, T. Martin, and W. Park, 2010: The Impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Climate, 23, 5668–5677.

    Article  Google Scholar 

  • Soon, W., 2009: Solar arctic-mediated climate variation on multidecadal to centennial timescales: Empirical evidence, mechanistic explanation, and testable consequences. Physical Geography, 30, 144–184.

    Article  Google Scholar 

  • Soon, W., K. Dutta, D. R. Legates, V. Velasco, and W.-J. Zhang, 2011: Variation in surface air temperature of China during the 20th century. Journal of Atmospheric and S olar-Terrestrial Physics, 73, 2331–2344.

    Article  Google Scholar 

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 2771–2777.

    Article  Google Scholar 

  • Tung, K.-K., and R. S. Lindzen, 1979: A theory of stationary waves. Part I: A simple theory of blocking. Mon. Wea. Rev., 107, 714–734.

    Article  Google Scholar 

  • Tung, K.-K., and D. C. Camp, 2008: Solar-cycle warming at the earth’s surface in NCEP and ERA40 data: A linear discriminant analysis. J. Geophys. Res., 113, DO5114, doi: 10.1029/2007JD009164.

    Article  Google Scholar 

  • van Loon, H., G. A. Meehl, and J. S. Dennis, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108, doi: 10.1029/2006JD007378.

    Article  Google Scholar 

  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15, 1987–1991.

    Article  Google Scholar 

  • Weng, H.-Y., 2005: The influence of the 11 yr solar cycle on the interannual-centennial climate variability. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 793–805.

    Article  Google Scholar 

  • Weng, H.-Y., 2012: Impacts of multi-scale solar activity on climate. Part II: Dominant timescales in decadal-centennial climate variability. Adv. Atmos. Sci., 29(4), 887–908, doi: 10.1007/s00376-012-1239-0.

    Article  Google Scholar 

  • Weng, H.-Y., and A. Barcilon, 1988: Wavenumber selection for single-wave steady states in a nonlinear baroclinic system. J. Atmos. Sci., 45, 1039–1051.

    Article  Google Scholar 

  • Weng, H.-Y., and K.-M. Lau, 1994: Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. J. Atmos. Sci., 51, 2523–2541.

    Article  Google Scholar 

  • White, W. B., J. Lean, D. R. Cayan, and M. D. Dettinger, 1997: Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102, 3255–3266.

    Article  Google Scholar 

  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengyi Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, H. Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes. Adv. Atmos. Sci. 29, 867–886 (2012). https://doi.org/10.1007/s00376-012-1238-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1238-1

Key words

Navigation