Skip to main content

Advertisement

Log in

Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effect of engineered nanoparticles (NPs) on soil microbial biomass C (MBC) and on earthworm Lumbricus rubellus. An artificial soil was incubated for 4 weeks with earthworms fed with vegetable residues contaminated by NPs, consisting of Ag, Co, Ni and TiO2. After the treatments, soils were analysed for MBC and total and water soluble metal-NPs, whereas earthworms were purged for 28 days and then analysed for fatty acids (FAs) and total metal-NPs. Longitudinal sections of earthworms were investigated by environmental scanning electron microscopy (ESEM), equipped with energy-dispersive X-ray spectroscopy (EDS), to provide insights about the retention and localization of NPs within earthworms. The nanoparticles reduced the MBC content in the following order Ag > Co > Ni, whereas TiO2 did not affect it. The ESEM-EDS analysis confirmed NP retention in earthworm guts and tissues. The solid/water coefficient of partition suggested that NPs interfered with living organisms due to their presence in suspension. Among the 27 FAs identified in earthworm tissues, the eicosapentaenoic acid (20:5ω3) was the most abundant. The degree of unsaturation of FAs was reduced by supplying NP-contaminated food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams L, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M (2011) Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 25:930–936

    Article  CAS  PubMed  Google Scholar 

  • Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    Article  CAS  PubMed  Google Scholar 

  • Asensio V, Rodríguez-Ruiz A, Garmendia L, Andre J, Kille P, Morgan AJ, Soto M, Marigómez I (2013) Towards an integrative soil health assessment strategy: a three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution. Sci Total Environ 442:344–365

    Article  CAS  PubMed  Google Scholar 

  • Barnes RJ, Riba O, Gardner MN, Scott TB, Jackman SA, Thompson IP (2010) Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79:448–454

    Article  CAS  PubMed  Google Scholar 

  • Bigorgne E, Foucaud L, Lapied E, Labille J, Botta C, Sirguey C, Falla J, Rose J, Joner EJ, Rodius F, Nahmani J (2011) Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. Environ Pollut 159:2698–2705

    Article  CAS  PubMed  Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249:257–280

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils. doi:10.1007/s00374-014-0938-3

    Google Scholar 

  • Calisi A, Zaccarelli N, Lionetto MG, Schettino T (2012) Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere 90:2637–2644

    Article  PubMed  Google Scholar 

  • Chaperon S, Sauvé S (2007) Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem 39:2329–2338

    Article  CAS  Google Scholar 

  • Collins JM, Dominey RN, Grogan WM (1990) Shape of the fluidity gradient in the plasma membrane of living HeLa cells. J Lipid Res 31:261–270

    CAS  PubMed  Google Scholar 

  • Crockett EL, Dougherty BE, McNamer AN (2001) Effects of acclimation temperature on enzymatic capacities and mitochondrial membranes from the body wall of the earthworm Lumbricus terrestris. Comp Biochem Phys B 130:419–426

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Article  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • Duarte AP, Freitas Melo V, Brown GG, Pauletti V (2014) Earthworm (Pontoscolex corethrurus) survival and impacts on properties of soils from a lead mining site in Southern Brazil. Biol Fertil Soils 50:851–860

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. App Environ Microb 59:3605–3617

    Google Scholar 

  • García JJ, Martinez-Ballariin E, Millan-Plano S, Allué JL, Albendea C, Fuentes L, Escanero JF (2005) Effects of trace elements on membrane fluidity. J Trace Elem Med Bio 19:19–22

    Article  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant NutrSoil Sci 173:554–558

    Google Scholar 

  • Howlett NG, Avery SV (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. App Microbiol Biotechnol 48:539–545

    Article  CAS  Google Scholar 

  • Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig J Nanomater Bios 4:557–563

    Google Scholar 

  • Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7

    Article  CAS  Google Scholar 

  • Kennedy AC (1994) Carbon utilization and fatty acid profiles for characterization of bacteria. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (Eds), Methods of soil analysis. Part 2: microbiological and biochemical properties, Soil Science Society of America, Madison, WI, pp. 543–556

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Massey PA, Creamer RE, Schulte RPO, Whelan MJ, Ritz K (2013) The effects of earthworms, botanical diversity and fertiliser type on the vertical distribution of soil nutrients and plant nutrient acquisition. Biol Fertil Soils 49:1189–1201

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez TJ, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • OECD (1984) Guideline for testing of chemicals No. 207, Earthworm acute toxicity test. Organization for Economic Co-operation and Development. Paris, France

  • Paoletti MG, Buscardo E, VanderJagt DJ, Pastuszyn A, Pizzoferrato L, Huang YS, Chuang LT, Millson M, Cerda H, Torres F, Glew RH (2003) Nutrient content of earthworms consumed by Ye’Kuana Amerindians of the Alto Orinoco of Venezuela. P Roy Soc B-Biol Sci 270:249–257

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Bernat P, Dlugonski J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105

    Article  CAS  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434

    Article  CAS  Google Scholar 

  • Percival SL, Bowler PG, Dolman J (2007) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 4:186–191

    Article  PubMed  Google Scholar 

  • Petersen SO, Holmstrup M (2000) Temperature effects on lipid composition of the earthworms Lumbricus rubellus and Eisenia nordenskioeldi. Soil Biol Biochem 32:1787–1791

    Article  CAS  Google Scholar 

  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  CAS  PubMed  Google Scholar 

  • Reinecke AJ (1992) A review of ecotoxicological test methods using earthworms. In Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (Eds.), Ecotoxicology of Earthworms. Intercept, Andover, MA, (pp. 7–19)

  • Sampedro L, Jeannotte R, Whalen JK (2006) Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biol Biochem 38:2188–2198

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez JC (2006) Earthworm biomarkers in ecological risk assessment. Rev Environ Contam T 188:85–126

    CAS  Google Scholar 

  • Schlich K, Klawonn T, Terytze K, Hund-Rinke K (2013) Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environ Toxicol Chem 32:181–188

    Article  CAS  PubMed  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 2:544–568

    Article  CAS  Google Scholar 

  • Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotox Environ Safe 71:616–619

    Article  CAS  Google Scholar 

  • Simonet BM, Valcárcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:7–21

    Article  Google Scholar 

  • Tourinho PS, Cornelis AM, Van Gestel AM, Lofts S, Svnedsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behaviour, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A, Fabrizi A, Vianello G (2012a) Toxicological effects of engineered nanoparticles on earthworms (Lumbricus rubellus) in short exposure. Environ Qual 8:51–60

    Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2012b) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  Google Scholar 

  • Yang H, Wu Q, Tang M, Kong L, Lu Z (2009) Cell membrane injury induced by silica nanoparticles in mouse macrophage. J Biomed Nanotechnol 5:528–535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Armando Laudicina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antisari, L.V., Laudicina, V.A., Gatti, A. et al. Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils 51, 261–269 (2015). https://doi.org/10.1007/s00374-014-0972-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0972-1

Keywords

Navigation