Skip to main content
Log in

The new CutSprof sampling tool and method for micromorphological and microfacies analyses of subsurface salt marsh sediments, Algarve, Portugal

  • Short Communication
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

A new tool and method for collecting undisturbed subsurface samples in estuarine environments by means of trenching, timbering and sectioning is presented. Smoothing of sidewalls is achieved by a so-called cutting sediment profiler (CutSprof), while water draining into the trench is cleared by pumping. From smoothed sidewall sections, undisturbed thin sediment slices can then be collected for micromorphological and microfacies analyses. Results demonstrating the successful application of this procedure are presented for salt marshes of the Bensafrim River estuary (Lagos, Algarve, Portugal). In addition to palaeo-reconstructions in salt marsh settings, the CutSprof would be highly suitable in various other research domains as well as for environmental management purposes, particularly where sampling below the groundwater table is desirable to explore, for example, animal–sediment relationships in tidal-flat and mangrove ecosystems as well as the dynamics of coastal wetlands today threatened by ever-increasing anthropogenic influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen JRL (2000) Morphodynamics of Holocene saltmarshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19(12):1155–1231

    Article  Google Scholar 

  • Araújo JMC Jr, Otero XL, Marques AGB, Nóbrega GN, Silva JRF, Ferreira TO (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Mar Lett 32:289–300

    Article  Google Scholar 

  • Araújo-Gomes J (2013) The Ribeira de Bensafrim estuary, Lagos (Portugal). Human establishment and geomorphological evolution in the late Holocene. In: Abstr Vol 8th AIG Int Conf Geomorphology and Sustainability, 27–31 August 2013, Paris

  • Borchert H (1968) Mikromorphologische Bodengefügebeobachtungen an einer Brach-Seemarsch, Knick-Brachmarsch und Flussmarsch anhand von 1 m tiefen Profilschliffen. Geol Jahrb 86:197–232

    Google Scholar 

  • Boski T, Moura D, Veiga-Pires C, Camacho S, Duarte D, Scott DB, Fernandes SG (2002) Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sediment Geol 150(1–2):103–122

    Article  Google Scholar 

  • Bouma AH (1968) Methods for the study of sedimentary structures. Wiley-Interscience, New York

    Google Scholar 

  • Bruins HJ, MacGillivray JA, Synolakis CE, Benjamini C, Keller J, Kisch HJ, Klügel A, van der Plicht J (2008) Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. J Archaeol Sci 35:191–212

    Article  Google Scholar 

  • Bullock P, Fedoroff N, Jongerius A, Stoops G, Tursina T, Babel U (1985) Handbook for Soil Thin Section Description. Waine Research Publications, Wolverhampton

    Google Scholar 

  • Cameron WM, Pritchard DW (1963) Estuaries. In: Hill MN (ed) The Sea, vol 2. Wiley, New York, pp 306–324

    Google Scholar 

  • Carr SJ (2001) Micromorphological criteria for discriminating subglacial and glacimarine sediments: evidence from a contemporary tidewater glacier, Spitsbergen. Quat Int 86:71–79

    Article  Google Scholar 

  • Courty MA, Goldberg P, Macphail R (1989) Soils and micromorphology in archaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Cremaschi M (2004) Manuale di geoarcheologia, 3rd edn. Laterza, Rome

    Google Scholar 

  • Cunha PP, Buylaert JP, Murray AS, Andrade C, Freitas MC, Fatela F, Munhá JM, Martins AA, Sugisaki S (2009) Optical dating of clastic deposits generated by an extreme marine coastal flood: the 1755 tsunami deposits in the Algarve (Portugal). Quat Geochronol 5(2-3):329–335

    Article  Google Scholar 

  • Dyer KR (1997) Estuaries: A physical introduction, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Flemming BW (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137

    Article  Google Scholar 

  • Franceschini G, McMillan IK, Compton JS (2005) Foraminifera of Langebaan Lagoon salt marsh and their application to the interpretation of late Pleistocene depositional environments at Monwabisi, False Bay coast, South Africa. S Afr J Geol 108:285–296

    Article  Google Scholar 

  • Goldberg P (1979) Micromorphology of sediments from Hayonim cave, Israel. Catena 6:167–181

    Article  Google Scholar 

  • Goldberg P, Byrd BF (1999) The interpretive potential of micromorphological analysis at prehistoric shell midden sites on Camp Pendleton. Pacific Coast Archaeol Soc Q 35(4):1–23

    Google Scholar 

  • Goldberg P, Macphail RI (2003) Short contribution: Strategies and techniques in collecting micromorphology samples. Geoarchaeology 18(5):571–578

    Article  Google Scholar 

  • Goldberg P, Schiegl S, Meligne K, Dayton C, Conard NJ (2003) Micromorphology and site formation at Hohle Fels cave, Schwabian Jura, Germany. Eiszeitalter Gegenwart 53:1–25

    Google Scholar 

  • Harris C (1998) The micromorphology of paraglacial and periglacial slope deposits: a case study from Morfa Bychan, west Wales, UK. J Quat Sci 13:73–84

    Article  Google Scholar 

  • Heap AD, Bryce S, Ryan D (2004) Facies evolution of Holocene estuaries and deltas: a large-sample statistical study from Australia. Sediment Geol 168(1–2):1–17

    Article  Google Scholar 

  • Hindson RA, Andrade C (1999) Sedimentation and hydrodynamic processes associated with the tsunami generated by the 1755 Lisbon earthquake. Quat Int 56:27–38

    Article  Google Scholar 

  • Johnson DP (1982) Sedimentary facies of an arid zone delta, western Australia. J Sediment Petrol 52:547–563

    Google Scholar 

  • Kemp RA (1999) Micromorphology of loess-paleosol sequences: a record of paleoenvironmental change. Catena 35:179–196

    Article  Google Scholar 

  • Kilfeather AA, Blackford JJ, van der Meer JJM (2007) Micromorphological analysis of coastal sediments from Willapa Bay, Washington, USA: a technique for analysing inferred tsunami deposits. Pure Applied Geophys 164:509–525

    Article  Google Scholar 

  • Kilfeather AA, Cofaigh CÓ, Dowdeswell JA, van der Meer JJM, Evans DJA (2010) Micromorphological characteristics of glacimarine sediments: implications for distinguishing genetic processes of massive diamicts. Geo-Mar Lett 30:77–97

    Article  Google Scholar 

  • Kim D, Grant WE, Cairns DM, Bartholdy J (2013) Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea: a quantitative model as proof of concept. Geo-Mar Lett 33:253–261

    Article  Google Scholar 

  • Kolditz K, Dellwig O, Barkowski J, Badewien TH, Freund H, Brumsack H-J (2012) Geochemistry of salt marsh sediments deposited during simulated sea-level rise and consequences for recent and Holocene coastal development of NW Germany. Geo-Mar Lett 32:49–60

    Article  Google Scholar 

  • Kooistra MJ (1978) Soil development in recent marine sediments of the intertidal zone in the Oosterschelde-the Netherlands. A soil micromorphological approach. PhD Thesis, University of Amsterdam, Amsterdam

  • Kortekaas S, Dawson AG (2007) Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sediment Geol 200(3–4):208–221

    Article  Google Scholar 

  • Kubiëna WL (1938) Micropedology. Collegiate Press, Ames, IA

    Google Scholar 

  • Kutílek M, Nielsen DR (2007) Interdisciplinarity of hydropedology. Geoderma 138(3–4):252–260

    Article  Google Scholar 

  • Lanesky DD, Logan BW, Brown RG, Hine AC (1979) A new approach to portable vibracoring underwater and on land. J Sediment Petrol 49:654–657

    Article  Google Scholar 

  • Lo EL, Bentley SJ Sr, Xu K (2014) Experimental study of cohesive sediment consolidation and resuspension identifies approaches for coastal restoration: Lake Lery, Louisiana. Geo-Mar Lett 34. doi:10.1007/s00367-014-0381-3

  • Macphail RI (2012) Soil micromorphology. In: Wilkinson TJ, Murphy PL, Brown N, Heppell EM (eds) The archaeology of the Essex coast. Excavations at the prehistoric site of the Stumble, vol II. Essex County Council, Chelmsford. East Anglian Archaeol 144:20–22, 147–149

  • Macphail RI, Allen MJ, Crowther J, Cruise GM, Whittaker JE (2010) Marine inundation: effects on archaeological features, materials, sediments and soils. Quat Int 214(1–2):44–55

    Article  Google Scholar 

  • Macphail RI, Bill J, Cannell R, Linderholm J, Rodsrud CL (2013) Integrated microstratigraphic investigations of coastal archaeological soils and sediments in Norway: the Gokstad ship burial mound and its environs including the Viking harbour settlement of Heimdaljordet, Vestfold. In: Site formation processes in archaeology: Soil and sediment micromorphology. Quat Int 315:131–146

    Article  Google Scholar 

  • McCarthy PJ, Martini IP, Leckie D (1998) Use of micromorphology for palaeoenvironmental interpretation of complex alluvial palaeosols: an example from the Mill Creek Formation (Albian), southwestern Alberta, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 143(1–3):87–110

    Article  Google Scholar 

  • Perillo GME, Minkoff DR, Piccolo MC (2005) Novel mechanism of stream formation in coastal wetlands by crab–fish–groundwater interaction. Geo-Mar Lett 25:214–220

    Article  Google Scholar 

  • Ramos-Pereira A (1990) A plataforma litoral do Alentejo e Algarve ocidental. Estudo de Geomorfologia. PhD Thesis, University of Lisbon, Lisbon

  • Ramos-Pereira A, Dias JA, Laranjeira M (1994) Variações holocénicas da linha de costa na baía de Lagos. In: “Contribuições para a Geomorfologia e Dinâmica Litorais em Portugal”, Centro de Estudos Geográficos, Linha de Acção de Geografia Física, Rel. no 35, Lisboa

  • Ramos-Pereira A, Ramos C, Trindade J, Araújo-Gomes J, Rocha J, Granja H, Gonçalves L, Monge-Soares A, Martins J (2011) FMI 5000: um projecto sobre mudanças ambientais holocénicas. Finisterra XLVI(91):99–106

    Google Scholar 

  • Rapp G, Hill CL (1998) Geoarchaeology – The earth-science approach to archaeological interpretation. Yale University Press, London

    Google Scholar 

  • Schneider H, Höfer D, Trog C, Busch S, Schneider M, Baade J, Daut G, Mäusbacher R (2009) Holocene estuary development in the Algarve Region (Southern Portugal) – A reconstruction of sedimentological and ecological evolution. Quat Int 221:141–158

    Article  Google Scholar 

  • Stephens M, Rose J, Gilbertson D, Canti MG (2005) Micromorphology of cave sediments in the humid tropics: Niah Cave, Sarawak. Asian Perspect 44:42–55

    Article  Google Scholar 

  • Stolt MH, Lindbo DL (2010) Soil organic matter. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 369–396

    Chapter  Google Scholar 

  • Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison, WI

  • Stoops G (2009) Evaluation of Kubiëna’s contribution to micropedology. At the occasion of the seventieth anniversary of his book “Micropedology”. Eurasian Soil Sci 42(6):693–698

    Article  Google Scholar 

  • Theler C (2004) Micromorphology and debris flows. Diploma, École Polytechnique Fédérale de Lausanne, Lausanne

  • van der Meer JJM (1993) Microscopic evidence of subglacial deformation. Quat Sci Rev 12:553–587

    Article  Google Scholar 

  • van der Meer JJM (1997) Particle and aggregate mobility in till: microscopic evidence of subglacial processes. Quat Sci Rev 16:827–831

    Article  Google Scholar 

  • van der Meer JJM, Menzies J (2011) The micromorphology of unconsolidated sediments. Sediment Geol 238(3–4):213–232

    Article  Google Scholar 

  • Vis GJ, Kasse C, Vandenberghe J (2008) Late Pleistocene and Holocene palaeogeography of the Lower Tagus Valley Portugal): effects of relative sea level, valley morphology and sediment supply. Quat Sci Rev 27:1682–1709

    Article  Google Scholar 

  • Woodroffe SA, Long AJ (2009) Salt marshes as archives of recent relative sea level change in West Greenland. Quat Sci Rev 28:1750–1761

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Portuguese Science and Technology Foundation (FCT-MCTES) for the financial support of this ongoing investigation within the research project PTDC/CTEGIX/ 104035/2008 - FMI 5000: Environmental changes: Fluvio-marine interactions over the last 5000 yrs. The assistance of the SLIF (Littoral and Fluvial Systems) team of the Centre for Geographical Studies, IGOT, University of Lisbon is also gratefully acknowledged. The editors of Geo-Marine Letters and an anonymous reviewer are thanked for their considerable help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Araújo-Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo-Gomes, J., Ramos-Pereira, A. The new CutSprof sampling tool and method for micromorphological and microfacies analyses of subsurface salt marsh sediments, Algarve, Portugal. Geo-Mar Lett 35, 69–75 (2015). https://doi.org/10.1007/s00367-014-0391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0391-1

Keywords

Navigation