Skip to main content
Log in

Flow field measurements of pulverized coal combustion using optical diagnostic techniques

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169

    Article  Google Scholar 

  • Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22(2):129–136

    Article  Google Scholar 

  • Benedict LH, Nobach H, Tropea C (2000) Estimation of turbulent velocity spectra from laser Doppler data. Meas Sci Technol 11(8):1089–1104

    Article  Google Scholar 

  • Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31(4):283–307

    Article  Google Scholar 

  • Cant RS, Mastorakos E (2008) An introduction to turbulent reacting flows. Imperial College Press, London, ISBN 978-1-86094-778-0

  • Chen L, Yong SZ, Ghoniem AF (2012) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and cfd modeling. Prog Energy Combust Sci 38(2):156–214

    Article  Google Scholar 

  • Costa M, Silva P, Azevedo JLT (2003) Measurements of gas species, temperature, and char burnout in a low-no x pulverized-coal-fired utility boiler. Combust Sci Technol 175(2):271–289

    Article  Google Scholar 

  • Edge P, Gharebaghi M, Irons R, Porter R, Porter RTJ, Pourkashanian M, Smith D, Stephenson P, Williams A (2011) Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem Eng Res Des 89(9):1470–1493

    Article  Google Scholar 

  • el Gendy H, Preciado I, Ring T, Eddings E (2010) Particle image velocimetry of pulverized oxy-coal flames. In: AIChE annual meeting, Salt Lake City, Utah

  • Heil P, Toporov D, Stadler H, Tschunko S, Förster M, Kneer R (2009) Development of an oxycoal swirl burner operating at low o2 concentrations. Fuel 88(7):1269–1274

    Article  Google Scholar 

  • Hwang SM, Kurose R, Akamatsu F, Tsuji H, Makino H, Katsuki M (2005) Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy Fuels 19(2):382–392

    Article  Google Scholar 

  • Hwang SM, Kurose R, Akamatsu F, Tsuji H, Makino H, Katsuki M (2006) Observation of detailed structure of turbulent pulverized-coal flame by optical measurement- (part 1, time-averaged measurement of behavior of pulverized-coal particles and flame structure). JSME Int J Ser B 49:1316–1327

    Article  Google Scholar 

  • IEA (ed) (2012) Medium-term coal market report 2012—market trends and projections to 2017. International Energy Agency, Paris, ISBN 978-92-64-17795-6

  • Jensen PA, Ereaut PR, Clausen S, Rathmann O (1994) Local measurements of velocity, temperature and gas composition in a pulverized-coal flame. J Inst Energy 67(470):37–46

    Google Scholar 

  • Kihm KD, Sun F, Chigier N (1990) Laser Doppler velocimetry investigation of swirler flowfields. J Propul Power 6(4):364–374

    Article  Google Scholar 

  • Kurose R, Watanabe H, Makino H (2009) Numerical simulations of pulverized coal combustion. KONA Powder Part J 27:144–156

    Google Scholar 

  • Lee SL, Durst F (1982) On the motion of particles in turbulent duct flows. Int J Multiph Flow 8(2):125–146

    Article  Google Scholar 

  • Mattern P, Sieber S, Dues M, Caglar S, Gabi M (2012) Simultaneous high speed stereo piv and lda measurements in the highly transient vortical wake of an axial fan. In: 16th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Most JM, Trouillet P, Jallais S, Mandin P, Marchand F, Le-Masson C, Witwicki P, Rampelberg D (2000) Development of a LDV probe for velocity measurements in a 600 mw pulverized coal power plant. In: Proceeding of 10th international symposium on laser technique techniques and applications, Lisbon, Portugal

  • Pickett LM, Jackson RE, Tree DR (1999) Lda measurements in a pulverized coal flame at three swirl ratios. Combust Sci Technol 143(1):79–107

    Article  Google Scholar 

  • Schnell U, Kaess M, Brodbek H (1993) Experimental and numerical investigation of NOx formation and its basic interdependences on pulverized coal flame characteristics. Combust Sci Technol 93(1):91–109

    Article  Google Scholar 

  • Spencer A, Hollis D (2005) Correcting for sub-grid filtering effects in particle image velocimetry data. Meas Sci Technol 16(11):2323–2335

    Article  Google Scholar 

  • Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD (2010) Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci 36(5):581–625

    Article  Google Scholar 

  • Toporov D, Bocian P, Heil P, Kellermann A, Stadler H, Tschunko S, Förster M, Kneer R (2008) Detailed investigation of a pulverized fuel swirl flame in co2/o2 atmosphere. Combust Flame 155(4):605–618

    Article  Google Scholar 

  • Tropea C, Yarin AL, Foss JF (eds) (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin, ISBN 978-3-540-25141-5

  • Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng C, Gupta R, Yamada T, Makino K, Yu J (2009) An overview on oxyfuel coal combustion—state of the art research and technology development. Chem Eng Res Des 87(8):1003–1016

    Article  Google Scholar 

  • Wall TF (2007) Combustion processes for carbon capture. Proc Combust Inst 31(1):31–47

    Article  Google Scholar 

  • Zhou R, Balusamy S, Hochgreb S (2012) A tool for the spectral analysis of the laser Doppler anemometer data of the Cambridge stratified swirl burner. Tech. Rep. CUED/A-TURBO/TR.135, Department of Engineering, University of Cambridge, Cambridge. http://www.dspace.cam.ac.uk/handle/1810/243258

Download references

Acknowledgments

The authors thank Prof. M. Pourkashanian, Prof. A. Hayhurst, Dr. S. Scott for their valuable guidance on coal handling and Dr W. Nimmo for the supply of coal samples. This work is supported by EPSRC research grant (#EP/G062153/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanan Balusamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balusamy, S., Schmidt, A. & Hochgreb, S. Flow field measurements of pulverized coal combustion using optical diagnostic techniques. Exp Fluids 54, 1534 (2013). https://doi.org/10.1007/s00348-013-1534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1534-2

Keywords

Navigation