Skip to main content
Log in

Imaging diffusion in a microfluidic device by third harmonic microscopy

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We monitor and characterize near-surface diffusion of miscible, transparent liquids in a microfluidic device by third harmonic microscopy. The technique enables observations even of transparent or index-matched media without perturbation of the sample. In particular, we image concentrations of ethanol diffusing in water and estimate the diffusion coefficient from the third harmonic images. We obtain a diffusion coefficient D = (460 ± 30) μm2/s, which is consistent with theoretical predictions. The investigations clearly demonstrate the potential of harmonic microscopy also under the challenging conditions of transparent fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Hassan A, Sandre O, Cabuil V (2010) Microfluidics in inorganic chemistry. Angew Chem Int Ed 49:6268–6286. doi:10.1002/anie.200904285

    Article  Google Scholar 

  • Antes J, Boskovic D, Krause H et al (2003) Analysis and improvement of strong exothermic nitrations in microreactors. Chem Eng Res Des 81:760–765. doi:10.1205/026387603322302931

    Article  Google Scholar 

  • Aptel F, Olivier N, Deniset-Besseau A et al (2010) Multimodal nonlinear imaging of the human cornea. Invest Ophthalmol Vis Sci 51:2459–2465. doi:10.1167/iovs.09-4586

    Article  Google Scholar 

  • Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924

    Article  Google Scholar 

  • Boyd R (2008) Nonlinear optics, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Carriles R, Schafer D, Sheetz K et al (2009) Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum 80:081101. doi:10.1063/1.3184828

    Article  Google Scholar 

  • Chan KLA, Gulati S, Edel JB et al (2009) Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy. Lab Chip 9:2909–2913. doi:10.1039/b909573j

    Article  Google Scholar 

  • Cheng J-X, Xie XS (2004) Coherent Anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B 108:827–840

    Article  Google Scholar 

  • Cleland AN (2003) Foundation of nanomechanics. Springer, Heidelberg

    Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218. doi:10.1038/nrd1985

    Article  Google Scholar 

  • Duncan MD, Reintjes J, Manuccia TJ (1982) Scanning coherent anti-Stokes Raman microscope. Opt Lett 7:350–352

    Article  Google Scholar 

  • Hellwarth R, Christensen P (1975) Nonlinear optical microscope using second harmonic generation. Appl Opt 14:247–248

    Article  Google Scholar 

  • Hessel V, Löwe H, Schönfeld F (2005) Micromixers: a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501. doi:10.1016/j.ces.2004.11.033

    Article  Google Scholar 

  • Hessel V, Renken A, Schonten JC, Yoshida J-I (2008) Micro process engineering. Wiley-VCH, Weinheim

    Google Scholar 

  • Hinsmann P, Frank J, Svasek P et al (2001) Design, simulation and application of a new micro mixing device for time resolved infrared spectroscopy of chemical reactions in solution. Lab Chip 1:16–21. doi:10.1039/b104391a

    Article  Google Scholar 

  • Hoffmann M, Schluter M, Rabiger N (2006) Experimental investigation of liquid–liquid mixing in T-shaped micro-mixers using μμ-LIF and μμ-PIV. Chem Eng Sci 61:2968–2976. doi:10.1016/j.ces.2005.11.029

    Article  Google Scholar 

  • Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 13:1–13. doi:10.1016/j.drudis.2007.10.003

    Article  Google Scholar 

  • Kihm KD (2011) Near-field characterization of micro/nano-scaled fluid flows. Annu Rev Fluid. doi:10.1017/S0022112064210970

    Google Scholar 

  • Neethirajan S, Kobayashi I, Nakajima M et al (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11:1574–1586. doi:10.1039/c0lc00230e

    Article  Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers: a review. J Micromech Microeng 15:R1–R16. doi:10.1088/0960-1317/15/2/R01

    Article  Google Scholar 

  • Ohno K-I, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453. doi:10.1002/elps

    Article  Google Scholar 

  • Petzold U, Büchel A, Halfmann T (2012) Effects of laser polarization and interface orientation in harmonic generation microscopy. Opt Express 20:967–971

    Article  Google Scholar 

  • Ray S, Mehta G, Srivastava S (2010) Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 10:731–748. doi:10.1002/pmic.200900458

    Article  Google Scholar 

  • Rinke G, Ewinger A, Kerschbaum S, Rinke M (2010) In situ Raman spectroscopy to monitor the hydrolysis of acetal in microreactors. Microfluid Nanofluid 10:145–153. doi:10.1007/s10404-010-0654-8

    Article  Google Scholar 

  • Schafer D, Müller M, Bonn M et al (2009) Coherent anti-Stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics. Opt Lett 34:211–213

    Article  Google Scholar 

  • Shcheslavskiy V, Petrov GI, Saltiel S, Yakovlev VV (2004) Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy. J Sruct Biol 147:42–49. doi:10.1016/j.jsb.2003.10.015

    Article  Google Scholar 

  • Squier J, Müller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315–324

    Article  Google Scholar 

  • Squires T, Quake S (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026. doi:10.1103/RevModPhys.77.977

    Article  Google Scholar 

  • Strehle KR, Cialla D, Rösch P et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547. doi:10.1021/ac0615246

    Article  Google Scholar 

  • Tyn MT, Calus WF (1975) Temperature and concentration dependence of mutual diffusion coefficients of some binary liquid systems. J Chem Eng Data 20:310–316. doi:10.1021/je60066a009

    Article  Google Scholar 

  • Tzeng Y–Y, Zhuo Z-Y, Lee M-Y et al (2011) Observation of spontaneous polarization misalignments in periodically poled crystals using second-harmonic generation microscopy. Opt Express 19:11106–11113

    Article  Google Scholar 

  • Wu Z, Nguyen N-T, Huang X (2004) Nonlinear diffusive mixing in microchannels: theory and experiments. J Micromech Microeng 14:604–611. doi:10.1088/0960-1317/14/4/022

    Google Scholar 

  • Zhang L, Wang Q, Liu Y-C, Zhang L-Z (2006) On the mutual diffusion properties of ethanol-water mixtures. J Chem Phys 125:104502. doi:10.1063/1.2244547

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Petzold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzold, U., Büchel, A., Hardt, S. et al. Imaging diffusion in a microfluidic device by third harmonic microscopy. Exp Fluids 53, 777–782 (2012). https://doi.org/10.1007/s00348-012-1321-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1321-5

Keywords

Navigation