Skip to main content
Log in

Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Concentrations of the trace metals Cu, Cd, Pb, and Zn were measured in seawater, rhizosphere sediments, interstitial water, and the tissues of three tropical species of seagrasses (Thalassia hemprichii, Enhalus acoroides and Cymodocea rotundata) from Xincun Bay of Hainan Island, South China. We analyzed different environmental compartments and the highest concentrations of Pb and Zn were found in the interstitial and seawater. The concentrations of Cd and Zn were significantly higher in blades compared with roots or rhizomes in T. hemprichii and E. acoroides, respectively. A metal pollution index (MPI) demonstrated that sediment, interstitial water, and seagrasses in the sites located nearest anthropogenic sources of pollution had the most abundant metal concentrations. There was obvious seasonal variation of these metals in the three seagrasses with higher concentrations of Cu, Pb and Zn in January and Cd in July. Furthermore, the relationships between metal concentrations in seagrasses and environmental compartments were positively correlated significantly. The bioconcentration factors (BCF) demonstrated that Cd from the tissues of the three seagrasses might be absorbed from the sediment by the roots. However, for C. rotundata, Zn is likely to be derived from the seawater through its blades. Therefore, the blades of T. hemprichii, E. acoroides and C. rotundata are potential bio-indicators to Cd content in sediment, and additionally Zn content (C. rotundata only) in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo-Figueroa D, Jiménez B D, Rodríguez-Sierra C J. 2005. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ. Pollut., 141: 336–342.

    Article  Google Scholar 

  • Alvarez-Legorreta T, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G. 2008. Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure. Aquat. Bot., 86:12–19.

    Google Scholar 

  • Ancora S, Bianchi N, Butini A, Buia M C, Gambi M C, Leonzio C. 2004. Posidonia oceanica as a biomonitor of trace elements in the gulf of naples: temporal trends by lepidochronology. Environ. Toxicol. Chem., 23: 1 093–1 099.

    Article  Google Scholar 

  • Calmano W, Ahlf W, Forstner U. 1996. Sediment quality assessment: chemical and biological approaches. In: Calmano W, Forstner U eds. Sediments and Toxic Substances. Springer, Berlin. p.1–35.

    Google Scholar 

  • Campanella L, Conti M E, Cubadda F, Sucapane C. 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environ. Pollut., 111: 117–126.

    Article  Google Scholar 

  • Capiomont A, Piazzi L, Pergent G. 2000. Seasonal variations of total mercury in foliar tissues of Posidonia oceanica. J. Mar. Biol. Assoc. UK., 80: 1 119–1 123.

    Article  Google Scholar 

  • Cozza R, Pangaro T, Maestrini P, Giordani T, Natali L, Cavallini A. 2006. Isolation of putative type 2 metallothionein encoding sequences and spatial expression pattern in the seagrass Posidonia oceanica. Aquat. Bot., 85: 317–323.

    Article  Google Scholar 

  • Dawes C J, Phillips R C, Morrison G. 2004. Seagrass communities of the gulf coast of florida: status and ecology. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute, and the Tampa Bay Estuary Program, St. Petersburg, Florida.

    Google Scholar 

  • den Hartog C. 1970. The Sea-Grasses of the World. North-Holland, Amsterdam.

    Google Scholar 

  • den Hartog C, Yang Z D. 1990. A catalogue of the seagrasses of China. Chin. J. Oceanol. Limnol., 8(1): 74–91.

    Article  Google Scholar 

  • Doyle C J, Pablo F, Lim R P, Hyne R V. 2003. Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. Arch. Environ. Contam. Toxicol., 44: 343–350.

    Article  Google Scholar 

  • Duarte C M. 1999. Seagrass ecology at the turn of the millennium: challenges for the new century. Aquat. Bot., 65: 7–20.

    Article  Google Scholar 

  • Green E P, Short F T. 2003. World Atlas of Seagrass. University of California Press, Berkeley.

    Google Scholar 

  • Hemminga M A, Duarte C M. 2000. Seagrass Ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Huang X P, Huang L M, Li Y H, Xu Z Z, Fong C W, Huang D J, Han Q Y, Huang H, Tan Y H, Liu S. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin. Sci. Bull., 51(Supp II): 136–142.

    Article  Google Scholar 

  • Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez J L. 2007. Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere, 68: 2 033–2 039.

    Article  Google Scholar 

  • Lafabrie C, Pergent G, Pergent-Martini C. 2009. Utilization of the seagrass Posidonia oceanica to evaluate the spatial dispersion of metal contamination. Sci. Total Environ., 407: 2 440–2 446.

    Google Scholar 

  • Lafabrie C, Pergent-Martini C, Pergent G. 2008. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean). Environ. Pollut., 151: 262–268.

    Article  Google Scholar 

  • Lewis M A, Dantin D D, Chancy C A, Abel K C, Lewis C G. 2007. Florida seagrass habitat evaluation: a comparative survey for chemical quality. Environ. Pollut., 146: 206–218.

    Article  Google Scholar 

  • Lewis M A, Devereux R. 2009. Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ. Toxicol. Chem., 28: 644–661.

    Article  Google Scholar 

  • Lyngby J E, Brix H. 1982. Seasonal and environmental variation of Cd, Cu, Pb, Zn concentration in eelgrass Zostera marina L. in the Limfjord, Denmark. Aquat. Bot., 14: 59–74.

    Article  Google Scholar 

  • Lyngby J E, Brix H. 1987. Monitoring of heavy metal contamination in the Limtjjord, Denmark, using biological indicators and sediment. Sci. Total Environ., 64: 239–252.

    Article  Google Scholar 

  • Lyngby J E, Brix H. 1989. Heavy metals in eelgrass (Zostera marina L.) during growth and decomposition. Hydrobiologia, 176–177: 189–196.

    Article  Google Scholar 

  • Macinnis-Ng C M O, Ralph P J. 2002. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni. Mar. Pollut. Bull., 45: 100–106.

    Article  Google Scholar 

  • Malea P, Boubonari T, Kevrekidis T. 2008. Iron, zinc, copper, lead and cadmium contents in Ruppia maritima from a Mediterranean coastal lagoon: monthly variation and distribution in different plant fractions. Bot. Mar., 51: 320–330.

    Article  Google Scholar 

  • Malea P, Haritonidis S, Kevrekidis T. 1994. Seasonal and local variations of metal concentrations in the seagrass Posidonia oceanica (L.) Delile in the Antikyra Gulf, Greece. Sci. Total Environ., 153: 225–235.

    Article  Google Scholar 

  • Malea P, Haritonidis S. 1995. Local distribution and seasonal variation of Fe, Ph, Zn, Cu, Cd, Na, K, Ca, and Mg concentrations in the seagrass Cymodocea nodosa (Ucria) Aschers. in the Antikyra Gulf, Greece. Mar. Ecol., 16: 41–56.

    Article  Google Scholar 

  • Malea P. 1994. Seasonal variation and local distribution of metals in the seagrass Halophila stipulacea (Forsk.) Aschers. in the Antikyra Gulf, Greece. Environ. Pollut., 85: 77–85.

    Article  Google Scholar 

  • Mayes R A, Maclntosh A W, Anderson V I. 1977. Uptake of cadmium and lead by a rooted aquatic macrophyte (Elodea canadensis). Ecol., 58: 1 176–1 180.

    Article  Google Scholar 

  • Mudroch A, Capobianco J A. 1979. Effects of mine effluents on uptake of Co, Ni, Cu, As, Zn, Cd, Cr and Pb by aquatic macrophytes. Hydrobiologia, 64: 223–231.

    Article  Google Scholar 

  • Nienhuis P H. 1986. Background levels of heavy metals in nine tropical seagrass species in Indonesia. Mar. Pollut. Bull., 17: 508–511.

    Article  Google Scholar 

  • Peng K J, Luo C L, Lou L Q, Li X D, Shen Z G. 2008. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci. Total Environ., 392: 22–29.

    Article  Google Scholar 

  • Pergent-Martini C, Pergent G. 2000. Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: an example from the Mediterranean. Int. J. Environ. Pollut., 13: 126–147.

    Article  Google Scholar 

  • Prange J A, Dennison W C. 2000. Physiological responses of five seagrass species to trace metals. Mar. Pollut. Bull., 41: 327–336.

    Article  Google Scholar 

  • Pulich W M. 1980. Heavy metal accumulation by selected Halodule wrightii Asch. populations in the Corpus Christi Bay area. Contrib. Mar. Sci. Univ. Tex., 23: 89–100.

    Google Scholar 

  • Ralph P J, Burchett M D. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut., 103: 91–101.

    Article  Google Scholar 

  • Schlacher-Hoenlinger M A, Schlacher T A. 1998. Accumulation, contamination, and seasonal variability of trace metals in the coastal zone patterns in a seagrass meadow from the Mediterranean. Mar. Biol., 131: 401–410.

    Article  Google Scholar 

  • Shi Y J, Fan H Q, Cui X J, Pan L H, Li S, Song X K. 2010. Overview on seagrasses and related research in China. Chin. J. Oceanol. Limnol., 28: 329–339.

    Article  Google Scholar 

  • Thangaradjou T, Nobi E P, Dilipan E, Sivakumar K, Susila S. 2010. Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem. Indian J. Mar. Sci., 39: 85–91.

    Google Scholar 

  • Tiller K G, Merry R H, Zarcinas B A, Ward T J. 1989. Regional geochemistry of metal-contaminated surficial sediments and seagrasses in upper Spencer Gulf, South Australia. Estuar. Coast. Shelf Sci., 28: 473–493.

    Article  Google Scholar 

  • Usero J, Morillo J, Gracia I. 2005. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59: 1 175–1 181.

    Article  Google Scholar 

  • Virnstein R W. 1987. Seagrass-associated invertebrate communities of the southeastern USA: a review. In: Durako M J, Phillips R C, Lewis R R eds. Proceedings of the Symposium on Subtropical—Tropical Seagrasses of the Southeastern United States. Florida Department of Natural Resources, Florida Marine Research Publications, Tallahassee. p.89–116.

    Google Scholar 

  • Wang C, Wang L Y, Sun Q. 2010. Response of phytochelatins and their relationship with cadmium toxicity in a floating macrophyte Pistia stratiotes L. at environmentally relevant concentrations. Water Environ. Res., 82: 147–154.

    Article  Google Scholar 

  • Ward T J, Correll R L, Anderson R B. 1986. Distribution of cadmium, lead and zinc among the marine sediments, seagrasses and fauna and the selection of sentinel accumulators near a lead smelter in South Australia. Aust. J. Mar. Freshw. Res., 37: 567–585.

    Article  Google Scholar 

  • Ward T J. 1987. Temporal variation of metals in the seagrass Posidonia australis and its potential as a sentinel accumulator near a lead smelter. Mar. Biol., 95: 315–321.

    Article  Google Scholar 

  • Warnau M, Fowler S W, Teyssié J L. 1996. Biokinetics of selected heavy metals and radionuclides in two marine macrophytes: the seagrass Posidonia oceanica and the alga Caulerpa taxifolia. Mar. Environ. Res., 41: 343–362.

    Article  Google Scholar 

  • Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, HeckJr K L, Hughes A R, Kendrick G A, Kenworthy W J, Short F T, Williams S L. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci., 106: 12 377–12 381.

    Article  Google Scholar 

  • Whelan T, Espinosa J, Villarreal X, Cotta-Goma M. 2005. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas. Environ. Int., 31: 15–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Huang  (黄小平).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40776086, 41076069), the Pilot Project of the Knowledge Innovation Program, South China Sea Institute of Oceanology, Chinese Academy of Sciences (No. LYQY200706), and the National 908 Special Project (No. GD908-02-08)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Huang, X. Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China. Chin. J. Ocean. Limnol. 30, 212–224 (2012). https://doi.org/10.1007/s00343-012-1092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1092-0

Keyword

Navigation