Skip to main content
Log in

Enzyme responses and lipid peroxidation in gills and hepatopancreas of clam Mactra vereformis, following cadmium exposure

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To assess the toxicity of heavy metal pollution to marine intertidal shellfish, enzymatic responses and lipid peroxidation were investigated in the clam Mactra vereformis exposed to cadmium under laboratory conditions. Three antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx), two immune defense enzymes (acid phosphatase, ACP; alkaline phosphatase, ALP), and one lipid peroxidation product (malondialdehyde, MDA) were measured in the gills and the hepatopancreas of the clam exposed to 0, 25, 75, and 125 μg/L cadmium for 0, 1, 3, 5, and 7 d. The results show that the concentrations of antioxidant enzymes in the organs soared to a peak value on the first day and then decreased afterwards in most cases. CAT and GPx activities in the hepatopancreas were higher than in the gills, but the SOD activity was lower in the hepatopancreas. ACP activity was unchanged until Day 3 in the hepatopancreas and until Day 5 in gills, when it began to increase. ALP activity showed no significant relationship with Cd treatment. MDA concentrations increased in the two tissues after Cd exposure, peaked on Day 3 in gills, and on Day 5 in hepatopancreas. These observations show that changes in the activities of antioxidant enzymes and ACP reflect the time course of oxidative stress in the clam caused by Cd, and could be used as potential biomarkers for ecotoxicological bioassays of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida J A, Diniz Y S, Marques S F G, Faine L A, Ribas B O, Burneiko R C, Novelli E L B. 2002. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ. Int., 27: 673–679.

    Article  Google Scholar 

  • Bebianno M J, Company R, Serafim A, Cosson R P, Fiala-Medoni A. 2005. Antioxidant systems and lipid peroxidation in Bathymodiolusazoricus from Mid-Atlantic Ridge hydrothermal vent fields. Aquat. Toxicol., 75: 354–373.

    Article  Google Scholar 

  • Bem E M, Mailer K, Elson C M. 1985. Influence of mercury (II), cadmium (II), methylmercury, and phenylmercury on the kinetic properties of rat liver glutathione peroxidase. Can. J. Biochem. Cell Biol., 63: 1 212–1 216.

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  Google Scholar 

  • Brouwer M, Brouwer T H. 1998. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Arch. Biochem. Biophys., 351: 257–264.

    Article  Google Scholar 

  • Chen H B. 2005. Research and demonstration of the technologies of restoring the typical coastal zone tidal-flat habitat and the living resources in the Bohai Sea. Mar. Inform., 3: 20–23. (in Chinese with English abstract)

    Google Scholar 

  • Chen J L, Liu W X, Liu S Z, Lin X M, Tao S. 2004. An evaluation on heavy metal contamination in the surface sediments in Bohai Sea. Mar. Sci., 28: 16–21. (in Chinese with English abstract)

    Google Scholar 

  • Company R, Serafim A, Cosson R P, Camus L, Shillito B, Fiala-Médioni A, Bebianno M J. 2006. The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Biol., 148: 817–825.

    Article  Google Scholar 

  • Cossu C, Doyotte A, Jacquin M C, Babut M, Exinger A, Vasseur P. 1997. Glutathione reductase, seleniumdependent glutathione peroxidase, glutathione levels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkers of aquatic contamination in field studies. Ecotoxi. Environ. Safe., 38: 122–131.

    Article  Google Scholar 

  • Fridovich I. 1998. Oxygen toxicity: a radical explanation. J. Exp. Biol., 210: 1 203–1 209.

    Google Scholar 

  • Géret F, Serafim A, Barreira L, Bebianno M J. 2002a. Response of antioxidant systems to copper in the gills of the clam Ruditapes decussates. Mar. Environ. Res., 54: 413–417.

    Article  Google Scholar 

  • Géret F, Serafim A, Barreira L, Bebianno M J. 2002b. Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in the gills of the clam Ruditapes decussatus. Biomarkers, 7: 242–256.

    Article  Google Scholar 

  • Géret F, Jouan A, Turpin V, Bebianno M J, Cosson R. 2002c. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat. Living Resour., 15: 61–66.

    Article  Google Scholar 

  • Géret F, Serafim A, Bebianno M J. 2003. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus? Ecotoxicol., 12: 417–426.

    Article  Google Scholar 

  • Gonzalez F, Ferez-Vidal M E, Arias J M, Mantoya E. 1994. Partial purification and biochemical properties of acid and alkaline phosphatases from Myxococcus coralloides. D. J. Appl. Bacteriol., 77: 567–573.

    Google Scholar 

  • Góth L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–151.

    Article  Google Scholar 

  • Giguère A, Couillard Y, Campbell P G C, Perceval O, Hare L, Pinel-Alloul B, Pellerin J. 2003. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat. Toxicol., 64: 185–200.

    Article  Google Scholar 

  • Jing G, Li Y, Xie L P, Zhang R Q. 2006. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp. Biochem. Phys. C, 144: 184–190.

    Google Scholar 

  • Kono Y, Fridovich I. 1982. Superoxide radical inhibits catalase. J. Biol. Chem., 257: 5 751–5 754.

    Google Scholar 

  • Lesser M P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol., 68: 253–278.

    Article  Google Scholar 

  • Li S M, Hu D Y, Tang C S. 1996. Biological effect of metallothionein. Foreign Med. Sci. (Sec. Pathophysiol. Clin. Med.), 16: 36–38.

    Google Scholar 

  • McCord J M, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6 049–6 055.

    Google Scholar 

  • Mazorra M T, Rubio J A, Blasco J. 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp. Biochem. Phys. B, 131: 241–249.

    Article  Google Scholar 

  • Metian M, Hédouin L, Barbot C, Teyssié J L, Fowler S W, Goudard F, Bustamante P, Durand J P, Piéri J, Warnau M. 2005. Use of radiotracer techniques to study subcellular distribution of metals and radionuclides in bivalves from the Noumea Lagoon, New Caledonia. B. Environ. Contam. Tox., 75: 89–93.

    Article  Google Scholar 

  • Meng W, Qin Y W, Zheng B H, Zhang L. 2008. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. China, 20: 814–819.

    Google Scholar 

  • Nair V, Cooper C S, Vietti D E, Turner G A. 1986. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde. Lipids, 21: 6–10.

    Article  Google Scholar 

  • Novelli E L B, Vieira E P, Rodrigues N L, Ribas B O. 1998. Risk assessment of cadmium toxicity on hepatic and renal tissues of rats. Environ. Res., 79: 102–105.

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351–358.

    Article  Google Scholar 

  • Pan L Q, Zhang H X. 2006. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp. Biochem. Phys. C, 144: 67–75.

    Google Scholar 

  • Pipe R K, Coles J A, Carissan F M M, Ramanathan K. 1999. Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquat. Toxicol., 46: 43–54.

    Article  Google Scholar 

  • Rajalakshmi S, Mohandas A. 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicol. Environ. Saf., 62: 140–143.

    Article  Google Scholar 

  • Rajalakshmi S, Mohandas A. 2008. Impact of mercury on the activity pattern of a marker enzyme in a freshwater bivalve. The Environmentalist, 28: 249–252.

    Article  Google Scholar 

  • Regoli F, Orlando E. 1994. Accumulation and subcellular distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel Mylilus galloprovincialis during a field transplant experiment. Mar. Pollut. Bull., 28: 592–600.

    Article  Google Scholar 

  • Regoli F, Principato G. 1995. Glutathione, glutathionedependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat. Toxicol., 31: 143–164.

    Article  Google Scholar 

  • Regoli F, Nigro M, Orlando E. 1998. Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquat. Toxicol., 40: 375–392.

    Article  Google Scholar 

  • Rittschof D, McClellan-Green P. 2005. Molluscs as multidisciplinary models in environment toxicology. Mar. Pollut. Bull., 50: 369–373.

    Article  Google Scholar 

  • Shi D L, Wang W X. 2004. Understanding the differences in Cd and Zn bioaccumulation and subcellular storage among different populations of marine clams. Environ. Sci. Technol., 38: 449–456.

    Article  Google Scholar 

  • Silva A M M, Novelli E L B, Fascineli M L, Almeida J A. 1999. Impact of an environmentally realistic intake of water contaminants and superoxide formation on tissues of rats. Environ. Pollut., 105: 243–249.

    Article  Google Scholar 

  • Sinnhuber R O, Yu T C. 1958. Characterization of the red pigment formed in the 2-thiobarbituric acid determination of oxidative rancidity. Food Res., 23: 626–634.

    Google Scholar 

  • Siraj Basha P, Usha Rani A. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotox. Environ. Safe., 56: 218–221.

    Article  Google Scholar 

  • Soldatov A A, Gostyukhina O L, Golovina I V. 2007. Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis Lam. under normal and oxidative-stress conditions: A review. Appl. Biochem. Microbio., 43: 556–562.

    Article  Google Scholar 

  • Splittgerber A G, Tapple A L. 1979. Inhibition of glutathione peroxidase by cadmium and other metal ions. Arch. Biochem. Biophys., 197: 534–542.

    Article  Google Scholar 

  • Stohs S J, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio. Med., 18: 321–326.

    Article  Google Scholar 

  • Viarengo A. 1990. Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp. Biochem. Phys. C, 97: 37–42.

    Article  Google Scholar 

  • Viarengo A, Nott J A. 1993. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp. Biochem. Phys. C, 104: 355–372.

    Article  Google Scholar 

  • Wang Y W, Liang L N, Shi J B, Jiang G B. 2005. Study on the contamination of heavy metals and their correlations in mollusks collected from coastal sites along the Chinese Bohai Sea. Environ. Int., 31: 1 103–1 113.

    Article  Google Scholar 

  • Wang C Y, Wang X L. 2007. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. J. Environ. Sci-China, 19: 1 061–1 066.

    Google Scholar 

  • Winston G W, Di Giulio R T. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19: 137–161.

    Article  Google Scholar 

  • Wu F, Zhang G, Dominy P. 2003. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 50: 67–78.

    Article  Google Scholar 

  • Xu H Z, Zhou C G, Ma Y A, Shang L S, Yao Z W, Li H. 2000. Environmental quality of deposits in offshore zone of China. Environ. Protect. Transportation, 21: 16–18. (in Chinese with English abstract)

    Google Scholar 

  • Xu X D, Lin Z H, Li S Q. 2005. The studied of the heavy metal pollution of Jiaozhou Bay. Mar. Sci. 29: 48–53. (in Chinese with English abstract)

    Google Scholar 

  • Yan X W, Zhang Y H, Zuo J P, Huo Z M, Yang F, Zhang G F, Yang D G, Guo H J. 2008. Artificial breeding technique of clam Mactra veneriformis in Northern coast in China. J. Dalian Fish. Univ., 23: 348–352. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Yang  (杨红生).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2007CB407305), the Tianjin Program for Marine Development by Reliance on Science and Technology (No. kx2010-4), the National Marine Public Welfare Research Project of China (No. 200805069), the Natural Science Fundation for Creative Research Groups (No. 40821004), and the Knowledge Innovation Key Projects of Chinese Academy of Sciences (No. KZCX2-YW-Q07-03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, H., Liu, G. et al. Enzyme responses and lipid peroxidation in gills and hepatopancreas of clam Mactra vereformis, following cadmium exposure. Chin. J. Ocean. Limnol. 29, 981–989 (2011). https://doi.org/10.1007/s00343-011-0088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0088-5

Keyword

Navigation