Skip to main content
Log in

Entanglement distillation using the exchange interaction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A key ingredient of quantum repeaters is entanglement distillation, i.e., the generation of high-fidelity entangled qubits from a larger set of pairs with lower fidelity. Here, we present entanglement distillation protocols based on qubit couplings that originate from exchange interaction. First, we make use of asymmetric bilateral two-qubit operations generated from anisotropic exchange interaction and show how to distill entanglement using two input pairs. We furthermore consider the case of three input pairs coupled through isotropic exchange. Here, we characterize a set of protocols which are optimizing the trade-off between the fidelity increase and the probability of a successful run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here, we set \(\hbar = 1\), and time-ordering in Eq. (7) is not necessary since \([H_{ij} (t), H_{ij} (t')] = 0\) for all t and \(t'\).

  2. We can separate the time evolution of the four-particle system in Eq. (10) into the two-particle propagators \(U_{13} (\alpha )\) and \(U_{24} (\beta )\) because the Hamiltonians describing each exchange interaction commute, i.e., \([H_{13}(t),H_{24}(t')]=0\) for all t and \(t'\), with \(H_{ij} (t)\) given in Eq. (6).

  3. The square of \(\sqrt{{\textsc {swap}}}^{-1}\) is also the swap operation and it can be understood as another root of swap.

  4. For clarity of notation: the unitaries \(U_A\) and \(U_B\) are assumed to be represented as matrices on \(({\mathbb {C}}^2)^{\otimes 6}\) with \(U_A\) acting as identity on Bob’s qubits and \(U_B\) as identity on Alice’s.

References

  1. H.J. Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  2. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  4. W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999)

    Article  ADS  Google Scholar 

  5. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H. Müller, J. Nunn, E.S. Polzik, J.G. Rarity, H. De Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I.A. Walmsley, M.C. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Eur. Phys. J. D 58, 1 (2010)

    Article  ADS  Google Scholar 

  6. C. Kloeffel, D. Loss, Annu. Rev. Condens. Matter Phys. 4, 51 (2013)

    Article  ADS  Google Scholar 

  7. V. Dobrovitski, G. Fuchs, A. Falk, C. Santori, D. Awschalom, Annu. Rev. Condens. Matter Phys. 4, 23 (2013)

    Article  ADS  Google Scholar 

  8. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  9. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  10. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  11. K.C. Nowack, F.H.L. Koppens, Y.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)

    Article  ADS  Google Scholar 

  12. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  13. G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  14. A. Auer, G. Burkard, Phys. Rev. A 90, 022320 (2014)

    Article  ADS  Google Scholar 

  15. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  17. T. Tanamoto, K. Maruyama, Y.-X. Liu, X. Hu, F. Nori, Phys. Rev. A 78, 062313 (2008)

    Article  ADS  Google Scholar 

  18. K. Maruyama, F. Nori, Phys. Rev. A 78, 022312 (2008)

    Article  ADS  Google Scholar 

  19. D. Gonţa, P. van Loock, Phys. Rev. A 84, 042303 (2011)

    Article  ADS  Google Scholar 

  20. D. Gonţa, P. van Loock, Phys. Rev. A 86, 052312 (2012)

    Article  ADS  Google Scholar 

  21. J.M. Taylor, W. Dür, P. Zoller, A. Yacoby, C.M. Marcus, M.D. Lukin, Phys. Rev. Lett. 94, 236803 (2005)

    Article  ADS  Google Scholar 

  22. J.-W. Pan, C. Simon, C. Brukner, A. Zeilinger, Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  23. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  24. A. Imamoğlu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  25. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  26. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

  27. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6, 249 (2010)

    Article  Google Scholar 

  28. T. Eggeling, R.F. Werner, Phys. Rev. A 63, 042111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Dirr, U. Helmke, GAMM-Mitteilungen 31, 59 (2008)

    Article  MathSciNet  Google Scholar 

  30. Brockett R. (1973) Geometric Methods in System Theory, volume 3 of NATO Advanced Study Institutes Series ed by D. Mayne, R. Brockett, (Springer, The Netherlands), p. 43–82

  31. A. Chinchuluun, P.M. Pardalos, A. Migdalas, L. Pitsoulis (eds.), Pareto Optimality Game Theory And Equilibria, (Springer, New York, 2008)

  32. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  33. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A. A. and G. B. acknowledge funding from the BMBF under the program Q.com-HL and from the DFG within SFB 767. R. S. and R. F. W. acknowledge funding from the BMBF under the program Q.com-Q, R. F. W. additionally acknowledges the ERC grand DQSIM, and L. D. is funded from the DFG within RTG 1991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Auer.

Additional information

Adrian Auer and René Schwonnek have contributed equally to this work.

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auer, A., Schwonnek, R., Schoder, C. et al. Entanglement distillation using the exchange interaction. Appl. Phys. B 122, 51 (2016). https://doi.org/10.1007/s00340-015-6286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6286-7

Keywords

Navigation