Skip to main content
Log in

Spectroscopy and laser cooling on the \({}^{1}S_{0}\)\(\,^{3}P_{1}\) line in Yb via an injection-locked diode laser at 1,111.6 nm

Injection locking for the yellow–green spectrum

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We generate 555.8-nm light with sub-MHz linewidth through the use of laser injection locking of a semiconductor diode at 1,111.6 nm, followed by frequency doubling in a resonant cavity. The integrity of the injection lock is investigated by studying an offset beat signal between slave and master lasers, by performing spectroscopy on the \((6s)^{2}\, {}^{1}S_{0}\hbox{--}(6s6p)\,{}^{3}P_{1}\) transition in magneto-optically trapped ytterbium, and by demonstrating additional laser cooling of \({}^{171}\hbox {Yb}\) with the 555.8-nm light in a dual-wavelength magneto-optical trap (MOT). For the \({}^{1}S_{0}\)\(\,^{3}P_{1}\) spectroscopy, we confirm the linear dependence between ground-state linewidth and the intensity of an off-resonant laser, namely that used to cool Yb atoms in a \({}^{1}S_{0}\)\(\,^{1}P_{1}\) magneto-optical trap. A temperature of 60 μK is produced for \({}^{171}\hbox {Yb}\) in the dual-wavelength MOT. Our results demonstrate the suitability of injection-locked 1,100–1,130-nm laser diodes as a source for sub-MHz linewidth radiation in the yellow–green spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. With the 555.8-nm light polarized orthogonally to the Zeeman slower \(B\)-field we observe splitting of the \({}^{3}P_{1}\) sub-states and so can verify the \(B\)-field strength of the Zeeman slower.

  2. To be consistent with Doppler cooling theory the frequency detuning is required to be \({\sim}\,-2.5\,\Gamma _{556}\).

References

  1. F.-L. Hong, J. Ishikawa, K. Sugiyama, A. Onae, H. Matsumoto, J. Ye, J. Hall, Comparison of independent optical frequency measurements using a portable iodine-stabilized Nd:YAG laser. IEEE Trans. Instrum. Meas. 52, 240–244 (2003)

    Article  Google Scholar 

  2. H.-C. Chui, S.-Y. Shaw, M.-S. Ko, Y.-W. Liu, J.-T. Shy, T. Lin, W.-Y. Cheng, R. Roussev, M. Fejer, Iodine stabilization of a diode laser in the optical communication band. Opt. Lett. 30, 646 (2005)

    Article  ADS  Google Scholar 

  3. A. Yamaguchi, S. Uetake, Y. Takahashi, A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms. Appl. Phys. B 91, 57–60 (2008)

    Article  ADS  Google Scholar 

  4. H. Matsuura, T. Takagi, Development of a low-noise yellow–green laser using a Yb-doped double-clad fiber laser and a periodically poled \(\text{ LiNbO}_{3}\) waveguide crystal. Jpn. J. Appl. Phys. 50, 032701 (2011)

    Article  ADS  Google Scholar 

  5. N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with \(10^{-18}\) instability. Science 341, 1215–1218 (2013)

    Article  ADS  Google Scholar 

  6. N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Spin-½optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009)

    Article  ADS  Google Scholar 

  7. M. Yasuda, H. Inaba, T. Kohnot, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, Improved absolute frequency measurement of the \({}^{171}\)Yb optical lattice clock towards a candidate for the redefinition of the second. Appl. Phys. Express 5, 102401 (2012)

    Article  ADS  Google Scholar 

  8. C.Y. Park, D.-H. Yu, W.-K. Lee, S.E. Park, E.B. Kim, S.K. Lee, J.W. Cho, T.H. Yoon, J. Mun, S.J. Park, T.Y. Kwon, S.-B. Lee, Absolute frequency measurement of \({}^{1}S_{0} ( \text{ F } = 1/2)-^{3}P_{0} ( \text{ F } = 1/2)\) transition of 171 Yb atoms in a one-dimensional optical lattice at KRISS. Metrologia 50, 119 (2013)

    Article  ADS  Google Scholar 

  9. M. Pizzocaro, G. Costanzo, A. Godone, F. Levi, A. Mura, M. Zoppi, D. Calonico, Realization of an ultrastable 578-nm laser for an Yb lattice clock. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 426–31 (2012)

    Article  Google Scholar 

  10. C. Ning, Z. Min, C. Hai-Qin, F. Su, H. Liang-Yu, Z. Xiao-Hang, G. Qi, J. Yan-Yi, B. Zhi-Yi, M. Long-Sheng, X. Xin-Ye, Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice. Chin. Phys. B 22, 090601 (2013)

    Article  Google Scholar 

  11. T. Loftus, J. Bochinski, T. Mossberg, Simultaneous multi-isotope trapping of ytterbium. Phys. Rev. A 63, 053401–1 (2001)

    Article  ADS  Google Scholar 

  12. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, Y. Takahashi, Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003)

    Article  ADS  Google Scholar 

  13. T. Fukuhara, S. Sugawa, Y. Takahashi, Bose–Einstein condensation of an ytterbium isotope. Phys. Rev. A 76, 0516041 (2007)

    Article  Google Scholar 

  14. M. Okano, H. Hara, M. Muramatsu, K. Doi, S. Uetake, Y. Takasu, Y. Takahashi, Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules. Appl. Phys. B 98, 691–6 (2010)

    Article  ADS  Google Scholar 

  15. F. Munchow, C. Bruni, M. Madalinski, A. Gorlitz, Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys. Chem. Chem. Phys. 13, 18734–7 (2011)

    Article  Google Scholar 

  16. M. Borkowski, P. Zuchowski, R. Ciurylo, P. Julienne, D. Kedziera, L. Mentel, P. Tecmer, F. Munchow, C. Bruni, A. Gorlitz, Scattering lengths in isotopologues of the RbYb system. Phys. Rev. A 88, 052708 (2013)

    Article  ADS  Google Scholar 

  17. M. Borkowski, R. Ciurylo, P. Julienne, R. Yamazaki, H. Hara, K. Enomoto, S. Taie, S. Sugawa, Y. Takasu, Y. Takahashi, Photoassociative production of ultracold heteronuclear ytterbium molecules. Phys. Rev. A 84, 030702 (2011)

    Article  ADS  Google Scholar 

  18. Y. Takasu, Y. Takahashi, Quantum degenerate gases of ytterbium atoms. J. Phys. Soc. Jpn. 78, 012001 (2009) (11 pp.)

    Article  ADS  Google Scholar 

  19. H. Hara, Y. Takasu, Y. Yamaoka, J. Doyle, Y. Takahashi, Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 106, 205304 (2011)

    Article  ADS  Google Scholar 

  20. A. Hansen, A. Khramov, W. Dowd, A. Jamison, B. Plotkin-Swing, R. Roy, S. Gupta, Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap. Phys. Rev. A 87, 013615 (2013). (8 pp.)

    Article  ADS  Google Scholar 

  21. S. Dorscher, A. Thobe, B. Hundt, A. Kochanke, R. Le Targat, P. Windpassinger, C. Becker, K. Sengstock, Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. Rev. Sci. Instrum. 84, 043109 (2013)

    Article  ADS  Google Scholar 

  22. S. Taie, R. Yamazaki, S. Sugawa, Y. Takahashi, An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys. 8, 825 (2012)

    Article  Google Scholar 

  23. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schafer, H. Hui Hu, L. Xia-Ji, J. Catani, C. Sias, M. Inguscio, L. Fallani, A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 10, 198 (2014)

    Article  Google Scholar 

  24. F. Scazza, C. Hofrichter, M. Hoefer, P.C. De Groot, I. Bloch, S. Foelling, Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys. 10, 779 (2014)

    Article  Google Scholar 

  25. F. Gerbier, J. Dalibard, Gauge fields for ultracold atoms in optical superlattices. New J. Phys. 12, 033007 (2010)

    Article  ADS  Google Scholar 

  26. H. Nonne, M. Moliner, S. Capponi, P. Lecheminant, K. Totsuka, Symmetry-protected topological phases of alkaline-earth cold fermionic atoms in one dimension. Europhys. Lett. 102, 37008 (2013)

    Article  ADS  Google Scholar 

  27. Y. Takasu, Y. Saito, Y. Takahashi, M. Borkowski, R. Ciurylo, P. Julienne, Controlled production of subradiant states of a diatomic molecule in an optical lattice. Phys. Rev. Lett. 108, 173002 (2012)

    Article  ADS  Google Scholar 

  28. V. Natarajan, Proposed search for an electric-dipole moment using laser-cooled \({}^{171}\)Yb atoms. Eur. Phys. J. D 32, 33–8 (2005)

    Article  ADS  Google Scholar 

  29. M. Tarbutt, B. Sauer, J. Hudson, E. Hinds, Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 15, 053034 (2013)

    Article  ADS  Google Scholar 

  30. F. Deuretzbacher, D. Becker, J. Bjerlin, S. Reimann, L. Santos, Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Phys. Rev. A 90, 013611 (2014)

    Article  ADS  Google Scholar 

  31. N. Chiodo, F. Du Burck, J. Hrabina, Y. Candela, J.-P. Wallerand, O. Acef, CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Opt. Commun. 311, 239–44 (2013)

    Article  ADS  Google Scholar 

  32. O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, M. De Micheli, Highly confining proton exchanged waveguides on Z-Cut LiNbO3 with preserved nonlinear coefficient. IEEE Photonics Technol. Lett. 26, 1557–60 (2014)

    Article  ADS  Google Scholar 

  33. E.B. Kim, W.-K. Lee, C.Y. Park, D.-H. Yu, S.E. Park, Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser. Opt. Express 18, 10308–14 (2010)

    Article  ADS  Google Scholar 

  34. M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, F.-L. Hong, Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium. J. Opt. Soc. Am. B 27, 1388–93 (2010)

    Article  ADS  Google Scholar 

  35. S. Sinha, C. Langrock, M. Digonnet, M. Fejer, R. Byer, Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator. Opt. Lett. 31, 347–9 (2006)

    Article  ADS  Google Scholar 

  36. A. Bouchier, G. Lucas-Leclin, P. Georges, J. Maillard, Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide. Opt. Express 13, 6974–6979 (2005)

    Article  ADS  Google Scholar 

  37. S. Kobayashi, T. Kimura, Injection locking in AlGaAs semiconductor laser. IEEE J. Quantum Electron. 17, 681–689 (1981)

    Article  ADS  Google Scholar 

  38. N. Kostylev, E. Ivanov, M. Tobar, J.J. McFerran, Sub-Doppler cooling of ytterbium with the \({}^{1}S_{0}\)\(\,^{1}P_{1}\) transition including \({}^{171}\text{ Yb } (\text{ I }=1/2)\). J. Opt. Soc. Am. B 31, 1614 (2014)

    Article  ADS  Google Scholar 

  39. M. Cristiani, T. Valenzuela, H. Gothe, J. Eschner, Fast nondestructive temperature measurement of two-electron atoms in a magneto-optical trap. Phys. Rev. A. 81, 063416 (2010)

    Article  ADS  Google Scholar 

  40. T. Loftus, J.R. Bochinski, T.W. Mossberg, Probing magneto-optic trap dynamics through weak excitation of a coupled narrow-linewidth transition. Phys. Rev. A 61, 061401 (2000)

    Article  ADS  Google Scholar 

  41. A. Slepkov, A. Bhagwat, V. Venkataraman, P. Londero, A. Gaeta, Spectroscopy of Rb atoms in hollow-core fibers. Phys. Rev. A 81, 053825 (2010)

    Article  ADS  Google Scholar 

  42. A. Akulshin, V. Sautenkov, V. Velichansky, A. Zibrov, M. Zverkov, Power broadening of saturation absorption resonance on the D2 line of rubidium. Opt. Commun. 77, 295–8 (1990)

    Article  ADS  Google Scholar 

  43. C.N. Cohen-Tannoudji, Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  44. H. Telle, Stabilization and modulation schemes of laser diodes for applied spectroscopy. Spectrochim. Acta Rev. 15, 301–327 (1993)

    Google Scholar 

  45. S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium. Appl. Phys. B 92, 33 (2008)

    Article  ADS  Google Scholar 

  46. W. Kozlovsky, C. Nabors, R. Byer, Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities. IEEE J. Quantum Electron. 24, 913–19 (1988)

    Article  ADS  Google Scholar 

  47. R. Le Targat, J. Zondy, P. Lemonde, 75%-Efficiency blue generation from an intracavity PPKTP frequency doubler. Opt. Commun. 247, 471–81 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (LE110100054). J.M. is supported through an ARC Future Fellowship (FT110100392) and N.K. through a Prescott Postgraduate Scholarship, UWA. We are gracious to Gary Light and Steve Osborne of the UWA Physics workshop for their technical expertise. We thank members of the ARC Centre of Excellence for Engineered Quantum Systems for their assistance, and S. Parker and E. Ivanov for the use of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. McFerran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostylev, N., Locke, C.R., Tobar, M.E. et al. Spectroscopy and laser cooling on the \({}^{1}S_{0}\)\(\,^{3}P_{1}\) line in Yb via an injection-locked diode laser at 1,111.6 nm. Appl. Phys. B 118, 517–525 (2015). https://doi.org/10.1007/s00340-015-6018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6018-z

Keywords

Navigation